Center for Materials and Electronic Technologies, RTI International, Durham, NC 27709, USA.
Dent Mater. 2011 May;27(5):e99-105. doi: 10.1016/j.dental.2011.01.005. Epub 2011 Feb 26.
This report presents a novel pretreatment technique, whereby the zirconia surface is converted to a more reactive zirconium oxyfluoride, enabling improved chemical bonding to other dental substrates via conventional silanation approaches.
The study leverages a novel gas-phase fluorination process that creates a thin oxyfluoride conversion layer on the surface of zirconia, making it more reactive for conventional adhesive bonding techniques. Zirconia specimens, polished and roughened, were pretreated and composite cylinders bonded using conventional adhesive techniques. All specimens were subjected to a force at a crosshead speed of 0.5mm/min in an electro-mechanical testing device. Single-factor analysis of variance (ANOVA) at a 5% confidence level was performed for the bonding strength data. Optical microscopy and scanning electron microscopy (SEM) were used to evaluate and quantify failure surfaces.
Shear bond strengths were analyzed using single-factor ANOVA (p<0.05). Mechanical testing results revealed that fluorinated zirconia specimens (both rough and polished) displayed the highest shear bond strengths as compared to other commercially available treatments. X-ray photoelectron spectroscopy analysis helped determine that this novel pretreatment created a more reactive, 2-4nm thick oxyfluoride conversion layer with approximate stoichiometry, ZrO(3)F(4).
Simple shear bond mechanical tests demonstrated that a fluorination pre-treatment is a viable method to chemically modify zirconia to produce a reactive surface for adhesive bonding.
本报告介绍了一种新颖的预处理技术,通过该技术,可将氧化锆表面转化为更具反应性的氧化锆氟化物,从而通过传统的硅烷化方法改善与其他牙科基底的化学结合。
本研究利用一种新颖的气相氟化工艺,在氧化锆表面形成一层薄的氧氟化物转化层,从而使其更适合传统的粘合技术。对抛光和粗化的氧化锆样品进行预处理,并使用传统的粘合技术将复合圆柱体粘合。所有样品均在机电测试设备中以 0.5mm/min 的十字头速度施加力。使用单因素方差分析(ANOVA)在 5%置信水平下对结合强度数据进行分析。使用光学显微镜和扫描电子显微镜(SEM)评估和量化失效表面。
使用单因素方差分析(ANOVA)分析剪切结合强度(p<0.05)。机械测试结果表明,与其他市售处理方法相比,氟化氧化锆样品(抛光和粗化)显示出最高的剪切结合强度。X 射线光电子能谱分析有助于确定这种新颖的预处理方法在表面形成了具有近似化学计量比的 2-4nm 厚的更具反应性的氧氟化物转化层,ZrO(3)F(4)。
简单的剪切结合机械测试表明,氟化预处理是一种可行的方法,可以化学修饰氧化锆,使其表面具有反应性,从而进行粘合。