Eli and Edythe Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.
J Clin Oncol. 2011 Apr 10;29(11):1415-23. doi: 10.1200/JCO.2010.28.1675. Epub 2011 Feb 28.
Despite significant progress in the molecular understanding of medulloblastoma, stratification of risk in patients remains a challenge. Focus has shifted from clinical parameters to molecular markers, such as expression of specific genes and selected genomic abnormalities, to improve accuracy of treatment outcome prediction. Here, we show how integration of high-level clinical and genomic features or risk factors, including disease subtype, can yield more comprehensive, accurate, and biologically interpretable prediction models for relapse versus no-relapse classification. We also introduce a novel Bayesian nomogram indicating the amount of evidence that each feature contributes on a patient-by-patient basis.
A Bayesian cumulative log-odds model of outcome was developed from a training cohort of 96 children treated for medulloblastoma, starting with the evidence provided by clinical features of metastasis and histology (model A) and incrementally adding the evidence from gene-expression-derived features representing disease subtype-independent (model B) and disease subtype-dependent (model C) pathways, and finally high-level copy-number genomic abnormalities (model D). The models were validated on an independent test cohort (n = 78).
On an independent multi-institutional test data set, models A to D attain an area under receiver operating characteristic (au-ROC) curve of 0.73 (95% CI, 0.60 to 0.84), 0.75 (95% CI, 0.64 to 0.86), 0.80 (95% CI, 0.70 to 0.90), and 0.78 (95% CI, 0.68 to 0.88), respectively, for predicting relapse versus no relapse.
The proposed models C and D outperform the current clinical classification schema (au-ROC, 0.68), our previously published eight-gene outcome signature (au-ROC, 0.71), and several new schemas recently proposed in the literature for medulloblastoma risk stratification.
尽管在对髓母细胞瘤的分子认识方面取得了重大进展,但患者的风险分层仍然是一个挑战。研究重点已经从临床参数转移到分子标志物,例如特定基因的表达和选定的基因组异常,以提高治疗结果预测的准确性。在这里,我们展示了如何整合高水平的临床和基因组特征或风险因素,包括疾病亚型,以生成更全面,准确和具有生物学可解释性的复发与无复发分类预测模型。我们还介绍了一种新颖的贝叶斯列线图,用于指示每个特征在患者个体基础上的贡献程度。
从接受髓母细胞瘤治疗的 96 名儿童的训练队列中开发了一种基于结果的贝叶斯累积对数优势模型,从转移和组织学的临床特征提供的证据开始(模型 A),并逐步添加代表疾病亚型独立(模型 B)和疾病亚型相关(模型 C)途径的基因表达衍生特征的证据,最后是高水平的拷贝数基因组异常(模型 D)。在独立的测试队列(n = 78)上对模型进行了验证。
在独立的多机构测试数据集上,模型 A 至 D 的接收器工作特征(au-ROC)曲线下面积分别为 0.73(95%CI,0.60 至 0.84),0.75(95%CI,0.64 至 0.86),0.80(95%CI,0.70 至 0.90)和 0.78(95%CI,0.68 至 0.88),分别用于预测复发与无复发。
所提出的模型 C 和 D 优于当前的临床分类方案(au-ROC,0.68),我们之前发表的八个基因预后签名(au-ROC,0.71)以及文献中最近提出的几种新方案髓母细胞瘤风险分层。