Department of Geosciences, Stony Brook University, Stony Brook, New York 11794-2100, USA.
Acc Chem Res. 2011 Mar 15;44(3):227-37. doi: 10.1021/ar1001318. Epub 2011 Mar 1.
Once the crystal structure of a chemical substance is known, many properties can be predicted reliably and routinely. Therefore if researchers could predict the crystal structure of a material before it is synthesized, they could significantly accelerate the discovery of new materials. In addition, the ability to predict crystal structures at arbitrary conditions of pressure and temperature is invaluable for the study of matter at extreme conditions, where experiments are difficult. Crystal structure prediction (CSP), the problem of finding the most stable arrangement of atoms given only the chemical composition, has long remained a major unsolved scientific problem. Two problems are entangled here: search, the efficient exploration of the multidimensional energy landscape, and ranking, the correct calculation of relative energies. For organic crystals, which contain a few molecules in the unit cell, search can be quite simple as long as a researcher does not need to include many possible isomers or conformations of the molecules; therefore ranking becomes the main challenge. For inorganic crystals, quantum mechanical methods often provide correct relative energies, making search the most critical problem. Recent developments provide useful practical methods for solving the search problem to a considerable extent. One can use simulated annealing, metadynamics, random sampling, basin hopping, minima hopping, and data mining. Genetic algorithms have been applied to crystals since 1995, but with limited success, which necessitated the development of a very different evolutionary algorithm. This Account reviews CSP using one of the major techniques, the hybrid evolutionary algorithm USPEX (Universal Structure Predictor: Evolutionary Xtallography). Using recent developments in the theory of energy landscapes, we unravel the reasons evolutionary techniques work for CSP and point out their limitations. We demonstrate that the energy landscapes of chemical systems have an overall shape and explore their intrinsic dimensionalities. Because of the inverse relationships between order and energy and between the dimensionality and diversity of an ensemble of crystal structures, the chances that a random search will find the ground state decrease exponentially with increasing system size. A well-designed evolutionary algorithm allows for much greater computational efficiency. We illustrate the power of evolutionary CSP through applications that examine matter at high pressure, where new, unexpected phenomena take place. Evolutionary CSP has allowed researchers to make unexpected discoveries such as a transparent phase of sodium, a partially ionic form of boron, complex superconducting forms of calcium, a novel superhard allotrope of carbon, polymeric modifications of nitrogen, and a new class of compounds, perhydrides. These methods have also led to the discovery of novel hydride superconductors including the "impossible" LiH(n) (n=2, 6, 8) compounds, and CaLi(2). We discuss extensions of the method to molecular crystals, systems of variable composition, and the targeted optimization of specific physical properties.
一旦一种化学物质的晶体结构被知晓,许多性质就可以被可靠且常规地预测。因此,如果研究人员在材料被合成之前就能预测其晶体结构,他们就可以显著加快新材料的发现。此外,在压力和温度任意条件下预测晶体结构的能力对于在极端条件下研究物质是非常宝贵的,因为在极端条件下实验很难进行。晶体结构预测(CSP)是一个只给定化学组成就找出原子最稳定排列的问题,长期以来一直是一个未解决的重大科学问题。这里有两个问题纠缠在一起:搜索,即对多维能量景观的有效探索,以及排序,即对相对能量的正确计算。对于有机晶体,其晶胞中只包含几个分子,只要研究人员不需要包含分子的许多可能异构体或构象,那么搜索就可以相当简单;因此,排序就成为了主要的挑战。对于无机晶体,量子力学方法通常可以提供正确的相对能量,这使得搜索成为最关键的问题。最近的发展在很大程度上为解决搜索问题提供了有用的实用方法。人们可以使用模拟退火、元动力学、随机采样、盆地跳跃、最小跳跃和数据挖掘。自 1995 年以来,遗传算法已经被应用于晶体,但成功率有限,这就需要开发一种非常不同的进化算法。本综述使用主要技术之一的混合进化算法 USPEX(通用结构预测器:进化晶体学)来综述 CSP。我们利用能量景观理论的最新发展,揭示了进化技术适用于 CSP 的原因,并指出了它们的局限性。我们证明了化学系统的能量景观具有整体形状,并探索了它们的固有维度。由于有序性和能量之间以及晶体结构集合的多样性和维度之间的反比关系,随机搜索找到基态的机会随着系统尺寸的增加呈指数级下降。精心设计的进化算法可以提高计算效率。我们通过研究高压下物质的应用展示了进化 CSP 的强大功能,在高压下会发生新的、意想不到的现象。进化 CSP 使研究人员能够做出意想不到的发现,例如透明的钠相、部分离子形式的硼、钙的复杂超导形式、新型超硬碳同素异形体、氮的聚合修饰以及一类新的化合物,过氢化物。这些方法还导致了新型氢化物超导材料的发现,包括“不可能”的 LiH(n)(n=2、6、8)化合物和 CaLi(2)。我们讨论了该方法在分子晶体、组成可变的系统以及特定物理性质的有针对性优化方面的扩展。