NINDS, National Institutes of Health, Bethesda, MD, USA.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011 May-Jun;3(3):247-55. doi: 10.1002/wnan.130. Epub 2011 Mar 7.
The recent advances in optical microscopy enable the simultaneous visualization of thousands of structural and signaling molecules as they dynamically rearrange within living cells. Super-resolution microscopy offers an unprecedented opportunity to define the molecular mechanisms of nanosensing through direct observation of protein movement. This technology provides a real-time readout of how genetically targeted molecular perturbations affect protein interactions. As we strive to meet the challenge offered by the opportunity to ask questions about the mechanism of cell that we never thought we could answer, we need to be aware that the new technologies are still evolving. The current limitations of each technique need to be considered when matching them to specific biological questions. In this review, we briefly describe the principles of super-resolution optical microscopy and focus on comparing the characteristics of each technique that are important for their use in studying nanosensing in the cellular microenvironment.
近年来,光学显微镜技术的发展使得我们能够在活细胞内动态重排时同时可视化数千种结构和信号分子。超分辨率显微镜为通过直接观察蛋白质运动来定义纳米传感的分子机制提供了前所未有的机会。该技术实时读取基因靶向分子扰动如何影响蛋白质相互作用。当我们努力应对这个机会带来的挑战时,即提出关于细胞机制的问题,这些问题是我们以前从未想过能够回答的,我们需要意识到新技术仍在不断发展。在将这些技术应用于研究细胞微环境中的纳米传感时,需要考虑每种技术的当前局限性,以匹配特定的生物学问题。在这篇综述中,我们简要描述了超分辨率光学显微镜的原理,并重点比较了每种技术的特性,这些特性对于它们在研究纳米传感中的应用非常重要。