Stürmer Til, Rothman Kenneth J, Glynn Robert J
Division of Pharmacoepidemiology and Pharmacoeconomics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02120, USA.
Pharmacoepidemiol Drug Saf. 2006 Oct;15(10):698-709. doi: 10.1002/pds.1231.
Both propensity score (PS) matching and inverse probability of treatment weighting (IPTW) allow causal contrasts, albeit different ones. In the presence of effect-measure modification, different analytic approaches produce different summary estimates.
We present a spreadsheet example that assumes a dichotomous exposure, covariate, and outcome. The covariate can be a confounder or not and a modifier of the relative risk (RR) or not. Based on expected cell counts, we calculate RR estimates using five summary estimators: Mantel-Haenszel (MH), maximum likelihood (ML), the standardized mortality ratio (SMR), PS matching, and a common implementation of IPTW.
Without effect-measure modification, all approaches produce identical results. In the presence of effect-measure modification and regardless of the presence of confounding, results from the SMR and PS are identical, but IPTW can produce strikingly different results (e.g., RR = 0.83 vs. RR = 1.50). In such settings, MH and ML do not estimate a population parameter and results for those measures fall between PS and IPTW.
Discrepancies between PS and IPTW reflect different weighting of stratum-specific effect estimates. SMR and PS matching assign weights according to the distribution of the effect-measure modifier in the exposed subpopulation, whereas IPTW assigns weights according to the distribution of the entire study population. In pharmacoepidemiology, contraindications to treatment that also modify the effect might be prevalent in the population, but would be rare among the exposed. In such settings, estimating the effect of exposure in the exposed rather than the whole population is preferable.
倾向评分(PS)匹配和治疗权重逆概率法(IPTW)都能进行因果对比,尽管对比方式不同。在存在效应测量修正的情况下,不同的分析方法会产生不同的汇总估计值。
我们给出一个电子表格示例,假设暴露、协变量和结局均为二分变量。协变量可能是混杂因素,也可能不是,可能是相对风险(RR)的效应修正因素,也可能不是。基于预期单元格计数,我们使用五种汇总估计方法计算RR估计值:Mantel-Haenszel(MH)法、最大似然法(ML)、标准化死亡率比(SMR)、PS匹配法以及IPTW的一种常用实现方式。
不存在效应测量修正时,所有方法得出的结果相同。在存在效应测量修正的情况下,无论是否存在混杂因素,SMR和PS得出的结果相同,但IPTW可能会产生显著不同的结果(例如,RR = 0.83与RR = 1.50)。在这种情况下,MH和ML无法估计总体参数,这些方法得出的结果介于PS和IPTW之间。
PS和IPTW之间的差异反映了特定层效应估计的不同加权方式。SMR和PS匹配根据暴露亚组中效应测量修正因素的分布分配权重,而IPTW根据整个研究人群的分布分配权重。在药物流行病学中,那些也会改变效应的治疗禁忌在总体人群中可能很常见,但在暴露人群中可能很少见。在这种情况下,估计暴露在暴露人群而非整个人群中的效应更为可取。