Lamprecht Anna-Lena, Naujokat Stefan, Margaria Tiziana, Steffen Bernhard
Chair for Programming Systems, Technical University Dortmund, Dortmund, D-44227, Germany.
J Biomed Semantics. 2011 Mar 7;2 Suppl 1(Suppl 1):S5. doi: 10.1186/2041-1480-2-S1-S5.
More than in other domains the heterogeneous services world in bioinformatics demands for a methodology to classify and relate resources in a both human and machine accessible manner. The Semantic Web, which is meant to address exactly this challenge, is currently one of the most ambitious projects in computer science. Collective efforts within the community have already led to a basis of standards for semantic service descriptions and meta-information. In combination with process synthesis and planning methods, such knowledge about types and services can facilitate the automatic composition of workflows for particular research questions.
In this study we apply the synthesis methodology that is available in the Bio-jETI workflow management framework for the semantics-based composition of EMBOSS services. EMBOSS (European Molecular Biology Open Software Suite) is a collection of 350 tools (March 2010) for various sequence analysis tasks, and thus a rich source of services and types that imply comprehensive domain models for planning and synthesis approaches. We use and compare two different setups of our EMBOSS synthesis domain: 1) a manually defined domain setup where an intuitive, high-level, semantically meaningful nomenclature is applied to describe the input/output behavior of the single EMBOSS tools and their classifications, and 2) a domain setup where this information has been automatically derived from the EMBOSS Ajax Command Definition (ACD) files and the EMBRACE Data and Methods ontology (EDAM). Our experiments demonstrate that these domain models in combination with our synthesis methodology greatly simplify working with the large, heterogeneous, and hence manually intractable EMBOSS collection. However, they also show that with the information that can be derived from the (current) ACD files and EDAM ontology alone, some essential connections between services can not be recognized.
Our results show that adequate domain modeling requires to incorporate as much domain knowledge as possible, far beyond the mere technical aspects of the different types and services. Finding or defining semantically appropriate service and type descriptions is a difficult task, but the bioinformatics community appears to be on the right track towards a Life Science Semantic Web, which will eventually allow automatic service composition methods to unfold their full potential.
与其他领域相比,生物信息学中异构服务的世界更需要一种方法,以便以人类和机器都能访问的方式对资源进行分类和关联。语义网旨在应对这一挑战,目前是计算机科学中最具雄心的项目之一。社区内的集体努力已经形成了语义服务描述和元信息的标准基础。结合流程合成和规划方法,这种关于类型和服务的知识可以促进针对特定研究问题的工作流自动组合。
在本研究中,我们应用了Bio-jETI工作流管理框架中可用的合成方法,用于基于语义的EMBOSS服务组合。EMBOSS(欧洲分子生物学开放软件套件)是一个包含350个工具(截至2010年3月)的集合,用于各种序列分析任务,因此是丰富的服务和类型来源,为规划和合成方法暗示了全面的领域模型。我们使用并比较了EMBOSS合成领域的两种不同设置:1)手动定义的领域设置,其中应用直观、高级、语义有意义的术语来描述单个EMBOSS工具的输入/输出行为及其分类;2)领域设置,其中此信息已从EMBOSS Ajax命令定义(ACD)文件和EMBRACE数据与方法本体(EDAM)自动派生。我们的实验表明,这些领域模型与我们的合成方法相结合,极大地简化了处理庞大、异构且因此难以手动处理的EMBOSS集合的工作。然而,它们也表明,仅从(当前的)ACD文件和EDAM本体中获取的信息,无法识别服务之间的一些基本联系。
我们的结果表明,适当的领域建模需要纳入尽可能多的领域知识,远远超出不同类型和服务的纯粹技术方面。找到或定义语义上合适的服务和类型描述是一项艰巨的任务,但生物信息学社区似乎正朝着生命科学语义网的正确方向前进,这最终将使自动服务组合方法充分发挥其潜力。