Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA.
J Phys Chem B. 2011 Mar 31;115(12):3091-9. doi: 10.1021/jp112133g. Epub 2011 Mar 10.
In this work, four types of polarizable models have been developed for calculating interactions between atomic charges and induced point dipoles. These include the Applequist, Thole linear, Thole exponential model, and the Thole Tinker-like. The polarizability models have been optimized to reproduce the experimental static molecular polarizabilities obtained from the molecular refraction measurements on a set of 420 molecules reported by Bosque and Sales. We grouped the models into five sets depending on the interaction types, that is, whether the interactions of two atoms that form the bond, bond angle, and dihedral angle are turned off or scaled down. When 1-2 (bonded) and 1-3 (separated by two bonds) interactions are turned off, 1-4 (separated by three bonds) interactions are scaled down, or both, all models including the Applequist model achieved similar performance: the average percentage error (APE) ranges from 1.15 to 1.23%, and the average unsigned error (AUE) ranges from 0.143 to 0.158 Å(3). When the short-range 1-2, 1-3, and full 1-4 terms are taken into account (set D models), the APE ranges from 1.30 to 1.58% for the three Thole models, whereas the Applequist model (DA) has a significantly larger APE (3.82%). The AUE ranges from 0.166 to 0.196 Å(3) for the three Thole models, compared with 0.446 Å(3) for the Applequist model. Further assessment using the 70-molecule van Duijnen and Swart data set clearly showed that the developed models are both accurate and highly transferable and are in fact have smaller errors than the models developed using this particular data set (set E models). The fact that A, B, and C model sets are notably more accurate than both D and E model sets strongly suggests that the inclusion of 1-2 and 1-3 interactions reduces the transferability and accuracy.
在这项工作中,开发了四种可极化模型来计算原子电荷和诱导点偶极子之间的相互作用。这些模型包括 Applequist、Thole 线性、Thole 指数模型和 Thole Tinker 类似模型。优化了可极化模型以重现从 Bosque 和 Sales 报道的一组 420 个分子的分子折射测量中获得的实验静态分子极化率。我们根据相互作用类型将模型分为五组,即键、键角和二面角形成的两个原子的相互作用是否关闭或缩小。当关闭 1-2(键合)和 1-3(通过两个键分离)相互作用,或缩小 1-4(通过三个键分离)相互作用,或者两者都有时,包括 Applequist 模型在内的所有模型都表现出相似的性能:平均百分比误差(APE)范围在 1.15%到 1.23%之间,平均无符号误差(AUE)范围在 0.143 到 0.158 Å(3)之间。当考虑短程 1-2、1-3 和完整 1-4 项(D 组模型)时,三个 Thole 模型的 APE 范围在 1.30%到 1.58%之间,而 Applequist 模型(DA)的 APE 明显更大(3.82%)。三个 Thole 模型的 AUE 范围在 0.166 到 0.196 Å(3)之间,而 Applequist 模型的 AUE 为 0.446 Å(3)。使用 70 分子的 van Duijnen 和 Swart 数据集进行的进一步评估清楚地表明,所开发的模型既准确又具有高度的可转移性,实际上比使用该特定数据集(E 组模型)开发的模型具有更小的误差。A、B 和 C 模型组明显比 D 和 E 模型组更准确,这一事实强烈表明包含 1-2 和 1-3 相互作用会降低可转移性和准确性。