Laboratoire Matières et Systèmes Complexes (MSC), UMR 7057 CNRS/Université Paris-Diderot, 10 Rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France.
Biomaterials. 2011 Jun;32(16):3988-99. doi: 10.1016/j.biomaterials.2011.02.031.
The long term outcome of nanoparticles in the organism is one of the most important concerns raised by the development of nanotechnology and nanomedicine. Little is known on the way taken by cells to process and degrade nanoparticles over time. In this context, iron oxide superparamagnetic nanoparticles benefit from a privileged status, because they show a very good tolerance profile, allowing their clinical use for MRI diagnosis. It is generally assumed that the specialized metabolism which regulates iron in the organism can also handle iron oxide nanoparticles. However the biotransformation of iron oxide nanoparticles is still not elucidated. Here we propose a multiscale approach to study the fate of nanomagnets in the organism. Ferromagnetic resonance and SQUID magnetization measurements are used to quantify iron oxide nanoparticles and follow the evolution of their magnetic properties. A nanoscale structural analysis by electron microscopy complements the magnetic follow-up of nanoparticles injected to mice. We evidence the biotransformation of superparamagnetic maghemite nanoparticles into poorly-magnetic iron species probably stored into ferritin proteins over a period of three months. A putative mechanism is proposed for the biotransformation of iron-oxide nanoparticles.
纳米颗粒在生物体内的长期归宿是纳米技术和纳米医学发展所引发的最重要问题之一。人们对于细胞随时间处理和降解纳米颗粒的方式知之甚少。在这种情况下,超顺磁性氧化铁纳米颗粒因其良好的耐受性而具有特殊地位,允许将其临床用于 MRI 诊断。人们通常认为调节体内铁的特殊代谢也可以处理氧化铁纳米颗粒。然而,氧化铁纳米颗粒的生物转化仍然没有被阐明。在这里,我们提出了一种多尺度方法来研究纳米磁铁在生物体内的命运。铁磁共振和 SQUID 磁化测量用于定量氧化铁纳米颗粒,并跟踪其磁性能的演变。通过电子显微镜进行的纳米级结构分析补充了注射到小鼠体内的纳米颗粒的磁性跟踪。我们证明了超顺磁磁铁矿纳米颗粒在三个月的时间内转化为磁性较差的铁物质,这些铁物质可能储存在铁蛋白中。我们提出了一种用于氧化铁纳米颗粒生物转化的假设机制。