Sustainable Chemistry and Energy Research, Institute of Environmental and Sustainable Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
Bioelectrochemistry. 2011 Jun;81(2):74-80. doi: 10.1016/j.bioelechem.2011.02.006. Epub 2011 Feb 23.
Shewanella is frequently used as a model microorganism for microbial bioelectrochemical systems. In this study, we used cyclic voltammetry (CV) to investigate extracellular electron transfer mechanisms from S. oneidensis MR-1 (WT) and five deletion mutants: membrane bound cytochrome (∆mtrC/ΔomcA), transmembrane pili (ΔpilM-Q, ΔmshH-Q, and ΔpilM-Q/ΔmshH-Q) and flagella (∆flg). We demonstrate that the formal potentials of mediated and direct electron transfer sites of the derived biofilms can be gained from CVs of the respective biofilms recorded at bioelectrocatlytic (i.e. turnover) and lactate depleted (i.e. non-turnover) conditions. As the biofilms possess only a limited bioelectrocatalytic activity, an advanced data processing procedure, using the open-source software SOAS, was applied. The obtained results indicate that S. oneidensis mutants used in this study are able to bypass hindered direct electron transfer by alternative redox proteins as well as self-mediated pathways.
希瓦氏菌常被用作微生物电化学系统的模式微生物。在这项研究中,我们使用循环伏安法(CV)来研究从 S. oneidensis MR-1(WT)和五个缺失突变体的细胞外电子传递机制:膜结合细胞色素(∆mtrC/ΔomcA)、跨膜菌毛(ΔpilM-Q、ΔmshH-Q 和 ΔpilM-Q/ΔmshH-Q)和鞭毛(∆flg)。我们证明,衍生生物膜的介导和直接电子转移位点的形式电位可以从在生物电化学(即周转)和乳酸耗尽(即非周转)条件下记录的各自生物膜的 CV 中获得。由于生物膜仅具有有限的生物电化学活性,因此应用了一种先进的数据处理程序,使用开源软件 SOAS。所得结果表明,本研究中使用的 S. oneidensis 突变体能够通过替代氧化还原蛋白和自我介导途径绕过受阻的直接电子转移。