Suppr超能文献

铜绿假单胞菌生物膜中外多糖对氨基糖苷类抗生素耐药性的调节

Aminoglycoside resistance of Pseudomonas aeruginosa biofilms modulated by extracellular polysaccharide.

机构信息

Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03775, USA.

出版信息

Int Microbiol. 2010 Dec;13(4):207-12. doi: 10.2436/20.1501.01.127.

Abstract

Pseudomonas aeruginosa is an opportunistic pathogen that produces sessile communities known as biofilms that are highly resistant to antibiotic treatment. Limited information is available on the exact role of various components of the matrix in biofilm-associated antibiotic resistance. Here we show that the presence of extracellular polysaccharide reduced the extent of biofilm-associated antibiotic resistance for one class of antibiotics. Minimal bactericidal concentration (MBC) for planktonic and biofilm cells of P. aeruginosa PA14 was measured using a 96 well microtiter plate assay. The MBC of biofilm-grown ΔpelA mutant, which does not produce the Pel polysaccharide, was 4-fold higher for tobramycin and gentamicin, and unchanged for ΔbifA mutant, which overproduces Pel, when compared to the wild type. Biofilms of pelA mutants in two clinical isolates of P. aeruginosa showed 4- and 8-fold higher MBC for tobramycin as compared to wild type. There was no difference in the biofilm resistance of any of these strains when tested with fluoroquinolones. This work forms a basis for future studies revealing the mechanisms of biofilm-associated antibiotic resistance to aminoglycoside antibiotics by P. aeruginosa.

摘要

铜绿假单胞菌是一种机会性病原体,它会产生被称为生物膜的定居群落,这些群落对抗生素治疗具有高度抗性。关于基质中各种成分在生物膜相关抗生素耐药性中的确切作用,目前信息有限。在这里,我们表明,胞外多糖的存在降低了一类抗生素与生物膜相关的抗生素耐药性程度。使用 96 孔微量滴定板测定法测定铜绿假单胞菌 PA14 浮游细胞和生物膜细胞的最小杀菌浓度(MBC)。与野生型相比,不产生 Pel 多糖的Δ pelA 突变体生物膜生长的 MBC 对妥布霉素和庆大霉素的 4 倍更高,而过度产生 Pel 的Δ bifA 突变体的 MBC 不变。与野生型相比,两种临床分离株的 pelA 突变体的生物膜中妥布霉素的 MBC 高 4 倍和 8 倍。用氟喹诺酮类药物检测时,这些菌株的生物膜耐药性没有差异。这项工作为未来的研究奠定了基础,这些研究揭示了铜绿假单胞菌生物膜相关抗生素对氨基糖苷类抗生素耐药性的机制。

相似文献

4
The effect of alginate lyase on the gentamicin resistance of Pseudomonas aeruginosa in mucoid biofilms.
J Appl Microbiol. 2016 Jul;121(1):126-35. doi: 10.1111/jam.13153. Epub 2016 May 27.
5
Marine Bacteria, A Source for Alginolytic Enzyme to Disrupt Biofilms.
Mar Drugs. 2019 May 24;17(5):307. doi: 10.3390/md17050307.
6
The role of exopolysaccharides Psl and Pel in resistance of to the oxidative stressors sodium hypochlorite and hydrogen peroxide.
Microbiol Spectr. 2024 Oct 3;12(10):e0092224. doi: 10.1128/spectrum.00922-24. Epub 2024 Aug 28.
7
Comparison of biofilm formation and antibiotic resistance pattern of Pseudomonas aeruginosa in human and environmental isolates.
Microb Pathog. 2017 Aug;109:94-98. doi: 10.1016/j.micpath.2017.05.004. Epub 2017 May 23.
9
Extracellular DNA Acidifies Biofilms and Induces Aminoglycoside Resistance in Pseudomonas aeruginosa.
Antimicrob Agents Chemother. 2015 Nov 9;60(1):544-53. doi: 10.1128/AAC.01650-15. Print 2016 Jan.

引用本文的文献

1
and Listeriosis: The Global Enigma.
Foods. 2025 Apr 3;14(7):1266. doi: 10.3390/foods14071266.
3
Efficacy of sucrose and povidone-iodine mixtures in peritoneal dialysis catheter exit-site care.
BMC Nephrol. 2024 May 2;25(1):151. doi: 10.1186/s12882-024-03591-1.
4
Antibacterial and antibiofilm potentials of root extract characterized by HPLC-ESI-Q-TOF-MS.
Saudi J Biol Sci. 2024 Apr;31(4):103962. doi: 10.1016/j.sjbs.2024.103962. Epub 2024 Feb 18.
5
Binding of GTP to BifA is required for the production of Pel-dependent biofilms in .
J Bacteriol. 2024 Feb 22;206(2):e0033123. doi: 10.1128/jb.00331-23. Epub 2024 Jan 10.
7
Association of Biofilm Inducer with , , and in Isolates.
Arch Razi Inst. 2022 Oct 31;77(5):1723-1728. doi: 10.22092/ARI.2022.358104.2153. eCollection 2022 Oct.
8
Interplay between biofilm microenvironment and pathogenicity of in cystic fibrosis lung chronic infection.
Biofilm. 2022 Oct 22;4:100089. doi: 10.1016/j.bioflm.2022.100089. eCollection 2022 Dec.
9
Characterization of Distinct Biofilm Cell Subpopulations and Implications in Quorum Sensing and Antibiotic Resistance.
mBio. 2022 Jun 28;13(3):e0019122. doi: 10.1128/mbio.00191-22. Epub 2022 Jun 13.
10
Preventing Biofilms on Indwelling Catheters by Surface-Bound Enzymes.
ACS Appl Bio Mater. 2021 Dec 20;4(12):8248-8258. doi: 10.1021/acsabm.1c00794. Epub 2021 Nov 17.

本文引用的文献

2
Biofilms in lab and nature: a molecular geneticist's voyage to microbial ecology.
Int Microbiol. 2010 Mar;13(1):1-7. doi: 10.2436/20.1501.01.105.
3
Pseudomonas aeruginosa Psl is a galactose- and mannose-rich exopolysaccharide.
J Bacteriol. 2007 Nov;189(22):8353-6. doi: 10.1128/JB.00620-07. Epub 2007 Jul 13.
6
Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14.
J Bacteriol. 2007 May;189(9):3603-12. doi: 10.1128/JB.01685-06. Epub 2007 Mar 2.
7
Saccharomyces cerevisiae-based molecular tool kit for manipulation of genes from gram-negative bacteria.
Appl Environ Microbiol. 2006 Jul;72(7):5027-36. doi: 10.1128/AEM.00682-06.
10
Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development.
J Bacteriol. 2004 Jul;186(14):4449-56. doi: 10.1128/JB.186.14.4449-4456.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验