Department of Mathematics, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0130, USA.
J Neurosci. 2011 Feb 23;31(8):2828-34. doi: 10.1523/JNEUROSCI.3773-10.2011.
Hippocampal neurons can display reliable and long-lasting sequences of transient firing patterns, even in the absence of changing external stimuli. We suggest that time-keeping is an important function of these sequences, and propose a network mechanism for their generation. We show that sequences of neuronal assemblies recorded from rat hippocampal CA1 pyramidal cells can reliably predict elapsed time (15-20 s) during wheel running with a precision of 0.5 s. In addition, we demonstrate the generation of multiple reliable, long-lasting sequences in a recurrent network model. These sequences are generated in the presence of noisy, unstructured inputs to the network, mimicking stationary sensory input. Identical initial conditions generate similar sequences, whereas different initial conditions give rise to distinct sequences. The key ingredients responsible for sequence generation in the model are threshold-adaptation and a Mexican-hat-like pattern of connectivity among pyramidal cells. This pattern may arise from recurrent systems such as the hippocampal CA3 region or the entorhinal cortex. We hypothesize that mechanisms that evolved for spatial navigation also support tracking of elapsed time in behaviorally relevant contexts.
海马体神经元可以显示可靠且持久的短暂发射模式序列,即使在没有变化的外部刺激的情况下也是如此。我们认为,计时是这些序列的一个重要功能,并提出了一种用于生成它们的网络机制。我们表明,从大鼠海马体 CA1 锥体神经元记录的神经元集合的序列可以可靠地预测在车轮上运行时的经过时间(15-20 秒),精度为 0.5 秒。此外,我们在一个递归网络模型中证明了多个可靠的、持久序列的生成。这些序列是在网络中存在嘈杂的、无结构的输入的情况下生成的,模拟静止的感觉输入。相同的初始条件产生相似的序列,而不同的初始条件则产生不同的序列。模型中负责序列生成的关键成分是阈值适应和锥体细胞之间类似于墨西哥帽的连接模式。这种模式可能来自于海马体 CA3 区域或内嗅皮层等递归系统。我们假设,为空间导航而进化的机制也支持在行为相关的上下文中跟踪经过的时间。