Institute of Plant Biology, Biological Research Centre, Szeged, Hungary.
Ann Bot. 2011 May;107(7):1193-202. doi: 10.1093/aob/mcr038. Epub 2011 Mar 25.
During the life cycle of plants, both embryogenic and post-embryogenic growth are essentially based on cell division and cell expansion that are under the control of inherited developmental programmes modified by hormonal and environmental stimuli. Considering either stimulation or inhibition of plant growth, the key role of plant hormones in the modification of cell division activities or in the initiation of differentiation is well supported by experimental data. At the same time there is only limited insight into the molecular events that provide linkage between the regulation of cell-cycle progression and hormonal and developmental control. Studies indicate that there are several alternative ways by which hormonal signalling networks can influence cell division parameters and establish functional links between regulatory pathways of cell-cycle progression and genes and protein complexes involved in organ development.
An overview is given here of key components in plant cell division control as acceptors of hormonal and developmental signals during organ formation and growth. Selected examples are presented to highlight the potential role of Ca(2+)-signalling, the complex actions of auxin and cytokinins, regulation by transcription factors and alteration of retinoblastoma-related proteins by phosphorylation.
Auxins and abscisic acid can directly influence expression of cyclin, cyclin-dependent kinase (CDK) genes and activities of CDK complexes. D-type cyclins are primary targets for cytokinins and over-expression of CyclinD3;1 can enhance auxin responses in roots. A set of auxin-activated genes (AXR1-ARGOS-ANT) controls cell number and organ size through modification of CyclinD3;1 gene expression. The SHORT ROOT (SHR) and SCARECROW (SCR) transcriptional factors determine root patterning by activation of the CYCD6;1 gene. Over-expression of the EBP1 gene (plant homologue of the ErbB-3 epidermal growth factor receptor-binding protein) increased biomass by auxin-dependent activation of both D- and B-type cyclins. The direct involvement of auxin-binding protein (ABP1) in the entry into the cell cycle and the regulation of leaf size and morphology is based on the transcriptional control of D-cyclins and retinoblastoma-related protein (RBR) interacting with inhibitory E2FC transcriptional factor. The central role of RBRs in cell-cycle progression is well documented by a variety of experimental approaches. Their function is phosphorylation-dependent and both RBR and phospho-RBR proteins are present in interphase and mitotic phase cells. Immunolocalization studies showed the presence of phospho-RBR protein in spots of interphase nuclei or granules in mitotic prophase cells. The Ca(2+)-dependent phosphorylation events can be accomplished by the calcium-dependent, calmodulin-independent or calmodulin-like domain protein kinases (CDPKs/CPKs) phosphorylating the CDK inhibitor protein (KRP). Dephosphorylation of the phospho-RBR protein by PP2A phosphatase is regulated by a Ca(2+)-binding subunit.
在植物的生命周期中,胚胎发生和胚胎后生长都本质上基于细胞分裂和细胞扩张,这些过程受激素和环境刺激修改的遗传发育程序控制。考虑到对植物生长的刺激或抑制,植物激素在细胞分裂活动的调节或分化启动中的关键作用得到了实验数据的充分支持。同时,对于细胞周期进程调节与激素和发育调控之间建立功能联系的分子事件,我们的了解非常有限。研究表明,激素信号网络可以通过几种替代方式影响细胞分裂参数,并在细胞周期进程的调节途径与参与器官发育的基因和蛋白质复合物之间建立功能联系。
本文概述了作为器官形成和生长过程中激素和发育信号接受者的植物细胞分裂控制的关键组成部分。选择了一些例子来突出 Ca(2+)信号转导、生长素和细胞分裂素的复杂作用、转录因子的调节以及通过磷酸化改变视黄醇结合蛋白相关蛋白的潜在作用。
生长素和脱落酸可以直接影响细胞周期蛋白、细胞周期蛋白依赖性激酶(CDK)基因的表达和 CDK 复合物的活性。D 型细胞周期蛋白是细胞分裂素的主要靶标,过表达 CyclinD3;1 可以增强根中的生长素反应。一组生长素激活基因(AXR1-ARGOS-ANT)通过修改 CyclinD3;1 基因的表达来控制细胞数量和器官大小。SHORT ROOT(SHR)和 SCARECROW(SCR)转录因子通过激活 CYCD6;1 基因来决定根的模式。过表达 EBP1 基因(植物表皮生长因子受体结合蛋白 ErbB-3 的同源物)通过生长素依赖性激活 D 型和 B 型细胞周期蛋白增加生物量。生长素结合蛋白(ABP1)直接参与细胞周期的进入以及叶片大小和形态的调节,这是基于 D 型细胞周期蛋白和与抑制性 E2FC 转录因子相互作用的视黄醇结合蛋白相关蛋白(RBR)的转录控制。通过各种实验方法充分证明了 RBR 在细胞周期进程中的核心作用。它们的功能依赖于磷酸化,并且 RBR 和磷酸化 RBR 蛋白都存在于有丝分裂期细胞的间期和有丝分裂期。免疫定位研究表明,磷酸化 RBR 蛋白存在于有丝分裂前期细胞的间期核斑点或颗粒中。钙依赖性、钙调蛋白非依赖性或钙调蛋白样结构域蛋白激酶(CDPK/CPKs)通过磷酸化 CDK 抑制剂蛋白(KRP)可以完成 Ca(2+)依赖性磷酸化事件。由 Ca(2+)结合亚基调节 PP2A 磷酸酶对磷酸化 RBR 蛋白的去磷酸化。