Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
EMBO J. 2011 May 4;30(9):1830-40. doi: 10.1038/emboj.2011.84. Epub 2011 Mar 25.
During DNA replication, repetitive synthesis of discrete Okazaki fragments requires mechanisms that guarantee DNA polymerase, clamp, and primase proteins are present for every cycle. In Escherichia coli, this process proceeds through transfer of the lagging-strand polymerase from the β sliding clamp left at a completed Okazaki fragment to a clamp assembled on a new RNA primer. These lagging-strand clamps are thought to be bound by the replisome from solution and loaded a new for every fragment. Here, we discuss a surprising, alternative lagging-strand synthesis mechanism: efficient replication in the absence of any clamps other than those assembled with the replisome. Using single-molecule experiments, we show that replication complexes pre-assembled on DNA support synthesis of multiple Okazaki fragments in the absence of excess β clamps. The processivity of these replisomes, but not the number of synthesized Okazaki fragments, is dependent on the frequency of RNA-primer synthesis. These results broaden our understanding of lagging-strand synthesis and emphasize the stability of the replisome to continue synthesis without new clamps.
在 DNA 复制过程中,离散的冈崎片段的重复合成需要保证每个循环都有 DNA 聚合酶、夹子和引物酶蛋白存在的机制。在大肠杆菌中,这个过程是通过将滞后链聚合酶从β滑动夹子转移到新的 RNA 引物上组装的夹子来进行的。这些滞后链夹子被认为是通过复制体从溶液中结合的,并为每个片段加载一个新的夹子。在这里,我们讨论了一种令人惊讶的、替代的滞后链合成机制:在没有任何夹子的情况下,除了与复制体组装的夹子之外,仍然能够有效地进行复制。我们使用单分子实验表明,在没有过量β夹子的情况下,预先组装在 DNA 上的复制复合物可以支持多个冈崎片段的合成。这些复制体的持续性,而不是合成的冈崎片段的数量,取决于 RNA 引物合成的频率。这些结果拓宽了我们对滞后链合成的理解,并强调了复制体在没有新夹子的情况下继续合成的稳定性。