Garcia Tanya P, Ma Yanyuan, Yin Guosheng
Department of Statistics, Texas A&M University, 3143 TAMU, College Station, TX 77843-3143, USA.
Lifetime Data Anal. 2011 Oct;17(4):552-65. doi: 10.1007/s10985-011-9195-z. Epub 2011 Apr 1.
In randomized clinical trials, we are often concerned with comparing two-sample survival data. Although the log-rank test is usually suitable for this purpose, it may result in substantial power loss when the two groups have nonproportional hazards. In a more general class of survival models of Yang and Prentice (Biometrika 92:1-17, 2005), which includes the log-rank test as a special case, we improve model efficiency by incorporating auxiliary covariates that are correlated with the survival times. In a model-free form, we augment the estimating equation with auxiliary covariates, and establish the efficiency improvement using the semiparametric theories in Zhang et al. (Biometrics 64:707-715, 2008) and Lu and Tsiatis (Biometrics, 95:674-679, 2008). Under minimal assumptions, our approach produces an unbiased, asymptotically normal estimator with additional efficiency gain. Simulation studies and an application to a leukemia study show the satisfactory performance of the proposed method.
在随机临床试验中,我们常常关注两样本生存数据的比较。尽管对数秩检验通常适用于此目的,但当两组具有非比例风险时,它可能会导致显著的检验效能损失。在Yang和Prentice(《生物统计学》92:1 - 17,2005)提出的更一般的生存模型类别中(对数秩检验是其特殊情况),我们通过纳入与生存时间相关的辅助协变量来提高模型效率。以无模型形式,我们用辅助协变量扩充估计方程,并利用Zhang等人(《生物统计学》64:707 - 715,2008)以及Lu和Tsiatis(《生物统计学》95:674 - 679,2008)的半参数理论来证明效率的提高。在最小假设条件下,我们的方法产生一个无偏、渐近正态的估计量,且具有额外的效率提升。模拟研究以及在一项白血病研究中的应用表明了所提方法的良好性能。