Yang Song, Prentice Ross L
Office of Biostatistics Research, National Heart, Lung, and Blood Institute, Bethesda, 20892, MD, U. S. A.
Stat Med. 2015 May 20;34(11):1801-17. doi: 10.1002/sim.6453. Epub 2015 Feb 17.
For risk and benefit assessment in clinical trials and observational studies with time-to-event data, the Cox model has usually been the model of choice. When the hazards are possibly non-proportional, a piece-wise Cox model over a partition of the time axis may be considered. Here, we propose to analyze clinical trials or observational studies with time-to-event data using a certain semiparametric model. The model allows for a time-dependent treatment effect. It includes the important proportional hazards model as a sub-model and can accommodate various patterns of time-dependence of the hazard ratio. After estimation of the model parameters using a pseudo-likelihood approach, simultaneous confidence intervals for the hazard ratio function are established using a Monte Carlo method to assess the time-varying pattern of the treatment effect. To assess the overall treatment effect, estimated average hazard ratio and its confidence intervals are also obtained. The proposed methods are applied to data from the Women's Health Initiative. To compare the Women's Health Initiative clinical trial and observational study, we use the propensity score in building the regression model. Compared with the piece-wise Cox model, the proposed model yields a better model fit and does not require partitioning of the time axis.
对于具有事件发生时间数据的临床试验和观察性研究中的风险和效益评估,Cox模型通常是首选模型。当风险可能不成比例时,可以考虑在时间轴的一个划分上使用分段Cox模型。在此,我们建议使用某种半参数模型来分析具有事件发生时间数据的临床试验或观察性研究。该模型允许治疗效果随时间变化。它包含重要的比例风险模型作为子模型,并且可以适应风险比随时间变化的各种模式。在使用拟似然方法估计模型参数后,使用蒙特卡罗方法建立风险比函数的同时置信区间,以评估治疗效果的随时间变化模式。为了评估总体治疗效果,还获得了估计的平均风险比及其置信区间。所提出的方法应用于妇女健康倡议的数据。为了比较妇女健康倡议的临床试验和观察性研究,我们在构建回归模型时使用倾向得分。与分段Cox模型相比,所提出的模型具有更好的模型拟合度,并且不需要对时间轴进行划分。