Sahoo Nirakar, Hoshi Toshinori, Heinemann Stefan H
1 Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena and Jena University Hospital , Jena, Germany .
Antioxid Redox Signal. 2014 Aug 20;21(6):933-52. doi: 10.1089/ars.2013.5614. Epub 2013 Oct 26.
Voltage-gated K+ channels are a large family of K+-selective ion channel protein complexes that open on membrane depolarization. These K+ channels are expressed in diverse tissues and their function is vital for numerous physiological processes, in particular of neurons and muscle cells. Potentially reversible oxidative regulation of voltage-gated K+ channels by reactive species such as reactive oxygen species (ROS) represents a contributing mechanism of normal cellular plasticity and may play important roles in diverse pathologies including neurodegenerative diseases.
Studies using various protocols of oxidative modification, site-directed mutagenesis, and structural and kinetic modeling provide a broader phenomenology and emerging mechanistic insights.
Physicochemical mechanisms of the functional consequences of oxidative modifications of voltage-gated K+ channels are only beginning to be revealed. In vivo documentation of oxidative modifications of specific amino-acid residues of various voltage-gated K+ channel proteins, including the target specificity issue, is largely absent.
High-resolution chemical and proteomic analysis of ion channel proteins with respect to oxidative modification combined with ongoing studies on channel structure and function will provide a better understanding of how the function of voltage-gated K+ channels is tuned by ROS and the corresponding reducing enzymes to meet cellular needs.
电压门控钾离子通道是一大类钾离子选择性离子通道蛋白复合物,在膜去极化时开放。这些钾离子通道在多种组织中表达,其功能对众多生理过程至关重要,尤其是对神经元和肌肉细胞。活性氧(ROS)等活性物质对电压门控钾离子通道的潜在可逆性氧化调节是正常细胞可塑性的一种促成机制,可能在包括神经退行性疾病在内的多种病理过程中发挥重要作用。
使用各种氧化修饰方案、定点诱变以及结构和动力学建模的研究提供了更广泛的现象学和新出现的机制见解。
电压门控钾离子通道氧化修饰功能后果的物理化学机制才刚刚开始被揭示。对于各种电压门控钾离子通道蛋白特定氨基酸残基氧化修饰的体内记录,包括靶点特异性问题,在很大程度上尚不存在。
对离子通道蛋白进行关于氧化修饰的高分辨率化学和蛋白质组学分析,并结合正在进行的通道结构和功能研究,将能更好地理解电压门控钾离子通道的功能是如何通过活性氧和相应的还原酶进行调节以满足细胞需求的。