Suppr超能文献

序贯方法在随机效应荟萃分析中的应用。

Sequential methods for random-effects meta-analysis.

机构信息

MRC Biostatistics Unit, Institute of Public Health, Robinson Way, Cambridge CB2 0SR, U.K.

出版信息

Stat Med. 2011 Apr 30;30(9):903-21. doi: 10.1002/sim.4088. Epub 2010 Dec 28.

Abstract

Although meta-analyses are typically viewed as retrospective activities, they are increasingly being applied prospectively to provide up-to-date evidence on specific research questions. When meta-analyses are updated account should be taken of the possibility of false-positive findings due to repeated significance tests. We discuss the use of sequential methods for meta-analyses that incorporate random effects to allow for heterogeneity across studies. We propose a method that uses an approximate semi-Bayes procedure to update evidence on the among-study variance, starting with an informative prior distribution that might be based on findings from previous meta-analyses. We compare our methods with other approaches, including the traditional method of cumulative meta-analysis, in a simulation study and observe that it has Type I and Type II error rates close to the nominal level. We illustrate the method using an example in the treatment of bleeding peptic ulcers.

摘要

尽管荟萃分析通常被视为回顾性活动,但它们越来越多地被前瞻性地应用于提供特定研究问题的最新证据。当荟萃分析更新时,应该考虑到由于重复的显著性检验而导致假阳性发现的可能性。我们讨论了使用包含随机效应的序贯方法进行荟萃分析,以允许研究之间存在异质性。我们提出了一种方法,该方法使用近似半贝叶斯程序来更新关于研究间方差的证据,从可能基于先前荟萃分析结果的信息先验分布开始。我们在模拟研究中比较了我们的方法与其他方法,包括传统的累积荟萃分析方法,并观察到它的 I 型和 II 型错误率接近名义水平。我们使用治疗消化性溃疡出血的一个例子来说明该方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e538/3107948/4b8a73c91586/sim0030-0903-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验