MRC Biostatistics Unit, Institute of Public Health, Robinson Way, Cambridge CB2 0SR, U.K.
Stat Med. 2011 Apr 30;30(9):903-21. doi: 10.1002/sim.4088. Epub 2010 Dec 28.
Although meta-analyses are typically viewed as retrospective activities, they are increasingly being applied prospectively to provide up-to-date evidence on specific research questions. When meta-analyses are updated account should be taken of the possibility of false-positive findings due to repeated significance tests. We discuss the use of sequential methods for meta-analyses that incorporate random effects to allow for heterogeneity across studies. We propose a method that uses an approximate semi-Bayes procedure to update evidence on the among-study variance, starting with an informative prior distribution that might be based on findings from previous meta-analyses. We compare our methods with other approaches, including the traditional method of cumulative meta-analysis, in a simulation study and observe that it has Type I and Type II error rates close to the nominal level. We illustrate the method using an example in the treatment of bleeding peptic ulcers.
尽管荟萃分析通常被视为回顾性活动,但它们越来越多地被前瞻性地应用于提供特定研究问题的最新证据。当荟萃分析更新时,应该考虑到由于重复的显著性检验而导致假阳性发现的可能性。我们讨论了使用包含随机效应的序贯方法进行荟萃分析,以允许研究之间存在异质性。我们提出了一种方法,该方法使用近似半贝叶斯程序来更新关于研究间方差的证据,从可能基于先前荟萃分析结果的信息先验分布开始。我们在模拟研究中比较了我们的方法与其他方法,包括传统的累积荟萃分析方法,并观察到它的 I 型和 II 型错误率接近名义水平。我们使用治疗消化性溃疡出血的一个例子来说明该方法。