Suppr超能文献

高 CO2 选择性有机分子笼:是什么决定了 CO2 的选择性。

Highly CO2-selective organic molecular cages: what determines the CO2 selectivity.

机构信息

Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA.

出版信息

J Am Chem Soc. 2011 May 4;133(17):6650-8. doi: 10.1021/ja110846c. Epub 2011 Apr 7.

Abstract

A series of novel organic cage compounds 1-4 were successfully synthesized from readily available starting materials in one-pot in decent to excellent yields (46-90%) through a dynamic covalent chemistry approach (imine condensation reaction). Covalently cross-linked cage framework 14 was obtained through the cage-to-framework strategy via the Sonogashira coupling of cage 4 with the 1,4-diethynylbenzene linker molecule. Cage compounds 1-4 and framework 14 exhibited exceptional high ideal selectivity (36/1-138/1) in adsorption of CO(2) over N(2) under the standard temperature and pressure (STP, 20 °C, 1 bar). Gas adsorption studies indicate that the high selectivity is provided not only by the amino group density (mol/g), but also by the intrinsic pore size of the cage structure (distance between the top and bottom panels), which can be tuned by judiciously choosing building blocks of different size. The systematic studies on the structure-property relationship of this novel class of organic cages are reported herein for the first time; they provide critical knowledge on the rational design principle of these cage-based porous materials that have shown great potential in gas separation and carbon capture applications.

摘要

一系列新型有机笼状化合物 1-4 是通过动态共价化学方法(亚胺缩合反应)从易得的起始原料一锅法以相当好的产率(46-90%)成功合成的。通过笼状化合物 4 与 1,4-二乙炔基苯连接分子的 Sonogashira 偶联反应,通过笼到框架策略获得了共价交联的笼状框架 14。笼状化合物 1-4 和框架 14 在标准温度和压力(STP,20°C,1 bar)下对 CO2 相对于 N2 的吸附表现出异常高的理想选择性(36/1-138/1)。气体吸附研究表明,高选择性不仅由氨基密度(mol/g)提供,而且由笼状结构的固有孔径(顶面板和底面板之间的距离)提供,可以通过明智地选择不同尺寸的构建块进行调整。本文首次报道了对这类新型有机笼状化合物的结构-性能关系的系统研究;它们提供了有关这些基于笼状的多孔材料的合理设计原理的关键知识,这些材料在气体分离和碳捕获应用中显示出巨大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验