Suppr超能文献

低估了生物多样性是解释为什么人们认为蓝藻属 Lyngbya 具有丰富的次生代谢产物的主要原因。

Underestimated biodiversity as a major explanation for the perceived rich secondary metabolite capacity of the cyanobacterial genus Lyngbya.

机构信息

Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.

出版信息

Environ Microbiol. 2011 Jun;13(6):1601-10. doi: 10.1111/j.1462-2920.2011.02472.x. Epub 2011 Apr 7.

Abstract

Marine cyanobacteria are prolific producers of bioactive secondary metabolites responsible for harmful algal blooms as well as rich sources of promising biomedical lead compounds. The current study focused on obtaining a clearer understanding of the remarkable chemical richness of the cyanobacterial genus Lyngbya. Specimens of Lyngbya from various environmental habitats around Curaçao were analysed for their capacity to produce secondary metabolites by genetic screening of their biosynthetic pathways. The presence of biosynthetic pathways was compared with the production of corresponding metabolites by LC-ESI-MS² and MALDI-TOF-MS. The comparison of biosynthetic capacity and actual metabolite production revealed no evidence of genetic silencing in response to environmental conditions. On a cellular level, the metabolic origin of the detected metabolites was pinpointed to the cyanobacteria, rather than the sheath-associated heterotrophic bacteria, by MALDI-TOF-MS and multiple displacement amplification of single cells. Finally, the traditional morphology-based taxonomic identifications of these Lyngbya populations were combined with their phylogenetic relationships. As a result, polyphyly of morphologically similar cyanobacteria was identified as the major explanation for the perceived chemical richness of the genus Lyngbya, a result which further underscores the need to revise the taxonomy of this group of biomedically important cyanobacteria.

摘要

海洋蓝藻是生物活性次生代谢产物的丰富生产者,这些产物与有害藻华有关,同时也是有前途的生物医学先导化合物的丰富来源。本研究旨在更清楚地了解蓝藻属 Lyngbya 的显著化学丰富度。通过对生物合成途径进行遗传筛选,分析了来自库拉索岛不同环境生境的 Lyngbya 标本产生次生代谢产物的能力。通过 LC-ESI-MS² 和 MALDI-TOF-MS 比较生物合成途径的存在与相应代谢物的产生。生物合成能力与实际代谢产物产生的比较表明,没有证据表明遗传沉默是对环境条件的响应。在细胞水平上,通过 MALDI-TOF-MS 和单细胞多次置换扩增,将检测到的代谢物的代谢起源定位到蓝藻上,而不是鞘相关的异养细菌上。最后,将这些 Lyngbya 群体的传统基于形态的分类鉴定与其系统发育关系相结合。结果表明,形态相似的蓝藻的多系性是该属 Lyngbya 化学丰富度的主要解释,这进一步强调了需要修订这群具有重要生物医学意义的蓝藻的分类。

相似文献

1
Underestimated biodiversity as a major explanation for the perceived rich secondary metabolite capacity of the cyanobacterial genus Lyngbya.
Environ Microbiol. 2011 Jun;13(6):1601-10. doi: 10.1111/j.1462-2920.2011.02472.x. Epub 2011 Apr 7.
2
Phylogenetic inferences reveal a large extent of novel biodiversity in chemically rich tropical marine cyanobacteria.
Appl Environ Microbiol. 2013 Mar;79(6):1882-8. doi: 10.1128/AEM.03793-12. Epub 2013 Jan 11.
4
Uncovering cryptic diversity of Lyngbya: the new tropical marine cyanobacterial genus Dapis (Oscillatoriales).
J Phycol. 2018 Aug;54(4):435-446. doi: 10.1111/jpy.12752. Epub 2018 Jun 25.
5
Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites.
Int J Syst Evol Microbiol. 2012 May;62(Pt 5):1171-1178. doi: 10.1099/ijs.0.033761-0. Epub 2011 Jul 1.
7
8
Comparative genomics uncovers the prolific and distinctive metabolic potential of the cyanobacterial genus .
Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):3198-3203. doi: 10.1073/pnas.1618556114. Epub 2017 Mar 6.

引用本文的文献

2
Nanosynthesis, phycochemical constituents, and pharmacological properties of cyanobacterium Oscillatoria sp.
Naunyn Schmiedebergs Arch Pharmacol. 2024 Mar;397(3):1347-1375. doi: 10.1007/s00210-023-02719-8. Epub 2023 Sep 15.
3
Naturally Occurring Organohalogen Compounds-A Comprehensive Review.
Prog Chem Org Nat Prod. 2023;121:1-546. doi: 10.1007/978-3-031-26629-4_1.
5
Natural Products from Cyanobacteria: Focus on Beneficial Activities.
Mar Drugs. 2019 May 30;17(6):320. doi: 10.3390/md17060320.
6
Spatial Distribution of Collections Yielding Marine Natural Products.
J Nat Prod. 2018 Oct 26;81(10):2307-2320. doi: 10.1021/acs.jnatprod.8b00288. Epub 2018 Oct 9.
10
Genome Sequence and Composition of a Tolyporphin-Producing Cyanobacterium-Microbial Community.
Appl Environ Microbiol. 2017 Sep 15;83(19). doi: 10.1128/AEM.01068-17. Print 2017 Oct 1.

本文引用的文献

2
Organization, evolution, and expression analysis of the biosynthetic gene cluster for scytonemin, a cyanobacterial UV-absorbing pigment.
Appl Environ Microbiol. 2009 Jul;75(14):4861-9. doi: 10.1128/AEM.02508-08. Epub 2009 May 29.
4
Reassessing the first appearance of eukaryotes and cyanobacteria.
Nature. 2008 Oct 23;455(7216):1101-4. doi: 10.1038/nature07381.
6
Biosynthetic origin of natural products isolated from marine microorganism-invertebrate assemblages.
Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4587-94. doi: 10.1073/pnas.0709851105. Epub 2008 Feb 4.
7
An AbrB-like protein might be involved in the regulation of cylindrospermopsin production by Aphanizomenon ovalisporum.
Environ Microbiol. 2008 Apr;10(4):988-99. doi: 10.1111/j.1462-2920.2007.01519.x. Epub 2007 Dec 17.
8
Single-cell genomic sequencing using Multiple Displacement Amplification.
Curr Opin Microbiol. 2007 Oct;10(5):510-6. doi: 10.1016/j.mib.2007.08.005. Epub 2007 Oct 17.
9
Primer3Plus, an enhanced web interface to Primer3.
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W71-4. doi: 10.1093/nar/gkm306. Epub 2007 May 7.
10
Bioactive natural products from marine cyanobacteria for drug discovery.
Phytochemistry. 2007 Apr;68(7):954-79. doi: 10.1016/j.phytochem.2007.01.012. Epub 2007 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验