Department of Chemistry, University of California, Berkeley, California 94720, USA.
Nat Mater. 2011 May;10(5):361-6. doi: 10.1038/nmat3004. Epub 2011 Apr 10.
Localized surface plasmon resonances (LSPRs) typically arise in nanostructures of noble metals resulting in enhanced and geometrically tunable absorption and scattering resonances. LSPRs, however, are not limited to nanostructures of metals and can also be achieved in semiconductor nanocrystals with appreciable free carrier concentrations. Here, we describe well-defined LSPRs arising from p-type carriers in vacancy-doped semiconductor quantum dots (QDs). Achievement of LSPRs by free carrier doping of a semiconductor nanocrystal would allow active on-chip control of LSPR responses. Plasmonic sensing and manipulation of solid-state processes in single nanocrystals constitutes another interesting possibility. We also demonstrate that doped semiconductor QDs allow realization of LSPRs and quantum-confined excitons within the same nanostructure, opening up the possibility of strong coupling of photonic and electronic modes, with implications for light harvesting, nonlinear optics, and quantum information processing.
局域表面等离激元共振(LSPRs)通常出现在贵金属纳米结构中,导致增强和几何可调的吸收和散射共振。然而,LSPRs 不仅限于金属纳米结构,也可以在具有可观自由载流子浓度的半导体纳米晶体中实现。在这里,我们描述了来自空位掺杂半导体量子点(QD)中 p 型载流子的明确定义的 LSPRs。通过半导体纳米晶体的自由载流子掺杂来实现 LSPRs,将允许对 LSPR 响应进行主动片上控制。等离子体传感和对单个纳米晶体中固态过程的操纵构成了另一个有趣的可能性。我们还证明,掺杂半导体 QD 允许在同一纳米结构中实现 LSPRs 和量子限制激子,从而为光子和电子模式的强耦合开辟了可能性,这对于光捕获、非线性光学和量子信息处理具有重要意义。