Suppr超能文献

基于拓扑数据分析的方法鉴定出具有独特突变特征和良好预后的乳腺癌亚群。

Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival.

机构信息

Department of Mathematics, Stanford University, Stanford, CA 94305, USA.

出版信息

Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):7265-70. doi: 10.1073/pnas.1102826108. Epub 2011 Apr 11.

Abstract

High-throughput biological data, whether generated as sequencing, transcriptional microarrays, proteomic, or other means, continues to require analytic methods that address its high dimensional aspects. Because the computational part of data analysis ultimately identifies shape characteristics in the organization of data sets, the mathematics of shape recognition in high dimensions continues to be a crucial part of data analysis. This article introduces a method that extracts information from high-throughput microarray data and, by using topology, provides greater depth of information than current analytic techniques. The method, termed Progression Analysis of Disease (PAD), first identifies robust aspects of cluster analysis, then goes deeper to find a multitude of biologically meaningful shape characteristics in these data. Additionally, because PAD incorporates a visualization tool, it provides a simple picture or graph that can be used to further explore these data. Although PAD can be applied to a wide range of high-throughput data types, it is used here as an example to analyze breast cancer transcriptional data. This identified a unique subgroup of Estrogen Receptor-positive (ER(+)) breast cancers that express high levels of c-MYB and low levels of innate inflammatory genes. These patients exhibit 100% survival and no metastasis. No supervised step beyond distinction between tumor and healthy patients was used to identify this subtype. The group has a clear and distinct, statistically significant molecular signature, it highlights coherent biology but is invisible to cluster methods, and does not fit into the accepted classification of Luminal A/B, Normal-like subtypes of ER(+) breast cancers. We denote the group as c-MYB(+) breast cancer.

摘要

高通量生物数据,无论是测序、转录微阵列、蛋白质组学还是其他方法产生的,都需要分析方法来解决其高维方面的问题。由于数据分析的计算部分最终确定了数据集组织中的形状特征,因此高维形状识别的数学仍然是数据分析的关键部分。本文介绍了一种从高通量微阵列数据中提取信息的方法,通过使用拓扑学,提供了比当前分析技术更深入的信息。该方法称为疾病进展分析(PAD),首先识别聚类分析中的稳健方面,然后深入挖掘这些数据中的多种生物学有意义的形状特征。此外,由于 PAD 包含可视化工具,因此它提供了一个简单的图像或图表,可以用于进一步探索这些数据。虽然 PAD 可以应用于广泛的高通量数据类型,但本文将其作为示例来分析乳腺癌转录数据。这确定了一组独特的雌激素受体阳性(ER(+))乳腺癌,这些肿瘤表达高水平的 c-MYB 和低水平的固有炎症基因。这些患者的存活率为 100%,没有转移。没有使用超出肿瘤和健康患者区分的监督步骤来识别这种亚型。该组具有明确且显著的分子特征,突出了连贯的生物学,但对聚类方法不可见,也不符合 ER(+)乳腺癌的 Luminal A/B、正常样亚型的公认分类。我们将该组命名为 c-MYB(+)乳腺癌。

相似文献

8
A three-gene model to robustly identify breast cancer molecular subtypes.一种稳健识别乳腺癌分子亚型的三基因模型。
J Natl Cancer Inst. 2012 Feb 22;104(4):311-25. doi: 10.1093/jnci/djr545. Epub 2012 Jan 18.

引用本文的文献

1
Topological Data Analysis Reveals a Subgroup of Luminal B Breast Cancer.拓扑数据分析揭示了腔面B型乳腺癌的一个亚组。
IEEE Open J Eng Med Biol. 2025 May 21;6:465-471. doi: 10.1109/OJEMB.2025.3558670. eCollection 2025.
4
A distribution-guided Mapper algorithm.一种分布引导的映射器算法。
BMC Bioinformatics. 2025 Mar 5;26(1):73. doi: 10.1186/s12859-025-06085-5.
5
Simplicity within biological complexity.生物复杂性中的简单性。
Bioinform Adv. 2025 Feb 6;5(1):vbae164. doi: 10.1093/bioadv/vbae164. eCollection 2025.
8
Hierarchical simplicial manifold learning.分层单纯形流形学习
PNAS Nexus. 2024 Nov 28;3(12):pgae530. doi: 10.1093/pnasnexus/pgae530. eCollection 2024 Dec.

本文引用的文献

2
Supervised risk predictor of breast cancer based on intrinsic subtypes.基于内在亚型的乳腺癌监督风险预测器
J Clin Oncol. 2009 Mar 10;27(8):1160-7. doi: 10.1200/JCO.2008.18.1370. Epub 2009 Feb 9.
4
Structural insight into RNA hairpin folding intermediates.对RNA发夹折叠中间体的结构洞察。
J Am Chem Soc. 2008 Jul 30;130(30):9676-8. doi: 10.1021/ja8032857. Epub 2008 Jul 1.
5
MYB function in normal and cancer cells.MYB在正常细胞和癌细胞中的功能。
Nat Rev Cancer. 2008 Jul;8(7):523-34. doi: 10.1038/nrc2439.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验