Suppr超能文献

分层单纯形流形学习

Hierarchical simplicial manifold learning.

作者信息

Zhang Wei, Shih Yi-Hsuan, Li Jr-Shin

机构信息

Department of Electrical & Systems Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA.

Division of Computational & Data Sciences, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA.

出版信息

PNAS Nexus. 2024 Nov 28;3(12):pgae530. doi: 10.1093/pnasnexus/pgae530. eCollection 2024 Dec.

Abstract

Learning global structures, i.e. topological properties, inherent in complex data is an essential yet challenging task that spans across various scientific and engineering disciplines. A fundamental approach is to extract local data representations and use them to assemble the global structure. This conjunction of local and global operations catalyzes the integration of tools from algebraic and computational topology with machine learning. In this article, we propose a hierarchical simplicial manifold learning algorithm, constituted by nested clustering and topological reduction, for constructing simplicial complexes and decoding their topological properties. We show that the learned complex possesses the same topology as the original embedding manifold from which the data were sampled. We demonstrate applicability, convergence, and computational efficiency of the algorithm on both synthetic and real-world data.

摘要

学习复杂数据中固有的全局结构,即拓扑性质,是一项跨越各种科学和工程学科的重要但具有挑战性的任务。一种基本方法是提取局部数据表示并使用它们来组装全局结构。这种局部和全局操作的结合促进了代数和计算拓扑工具与机器学习的整合。在本文中,我们提出了一种分层单纯形流形学习算法,该算法由嵌套聚类和拓扑约简构成,用于构建单纯复形并解码其拓扑性质。我们表明,学习到的复形与从中采样数据的原始嵌入流形具有相同的拓扑结构。我们在合成数据和真实世界数据上证明了该算法的适用性、收敛性和计算效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5a5/11631340/c442cc6c6a5e/pgae530f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验