Suppr超能文献

基于 modelMaGe 的自动化集成建模:分析 HOG 通路 Sho1 分支中的反馈机制。

Automated ensemble modeling with modelMaGe: analyzing feedback mechanisms in the Sho1 branch of the HOG pathway.

机构信息

Institute for Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Magdeburg, Germany.

出版信息

PLoS One. 2011 Mar 30;6(3):e14791. doi: 10.1371/journal.pone.0014791.

Abstract

In systems biology uncertainty about biological processes translates into alternative mathematical model candidates. Here, the goal is to generate, fit and discriminate several candidate models that represent different hypotheses for feedback mechanisms responsible for downregulating the response of the Sho1 branch of the yeast high osmolarity glycerol (HOG) signaling pathway after initial stimulation. Implementing and testing these candidate models by hand is a tedious and error-prone task. Therefore, we automatically generated a set of candidate models of the Sho1 branch with the tool modelMaGe. These candidate models are automatically documented, can readily be simulated and fitted automatically to data. A ranking of the models with respect to parsimonious data representation is provided, enabling discrimination between candidate models and the biological hypotheses underlying them. We conclude that a previously published model fitted spurious effects in the data. Moreover, the discrimination analysis suggests that the reported data does not support the conclusion that a desensitization mechanism leads to the rapid attenuation of Hog1 signaling in the Sho1 branch of the HOG pathway. The data rather supports a model where an integrator feedback shuts down the pathway. This conclusion is also supported by dedicated experiments that can exclusively be predicted by those models including an integrator feedback.modelMaGe is an open source project and is distributed under the Gnu General Public License (GPL) and is available from http://modelmage.org.

摘要

在系统生物学中,对生物过程的不确定性转化为替代的数学模型候选者。在这里,目标是生成、拟合和区分几个候选模型,这些模型代表了不同的假设,用于解释负责下调酵母高渗透压甘油(HOG)信号通路 Sho1 分支响应的反馈机制。通过手工实现和测试这些候选模型是一项繁琐且容易出错的任务。因此,我们使用 modelMaGe 工具自动生成了 Sho1 分支的一组候选模型。这些候选模型自动记录,可随时自动模拟和拟合数据。还提供了模型在数据表示简洁性方面的排名,从而能够区分候选模型及其背后的生物学假设。我们得出的结论是,之前发表的模型拟合了数据中的虚假效应。此外,判别分析表明,报告的数据不支持这样的结论,即脱敏机制导致 Hog1 信号在 HOG 通路的 Sho1 分支中迅速衰减。相反,数据支持一种模型,其中积分器反馈关闭通路。这一结论也得到了专门实验的支持,这些实验只能由包括积分器反馈的模型来预测。modelMaGe 是一个开源项目,根据 GNU 通用公共许可证(GPL)分发,可从 http://modelmage.org 获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cf6/3068199/e1c3f780be85/pone.0014791.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验