Mangan N M, Kutz J N, Brunton S L, Proctor J L
Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA.
Institute for Disease Modeling, Bellevue, WA 98005, USA.
Proc Math Phys Eng Sci. 2017 Aug;473(2204):20170009. doi: 10.1098/rspa.2017.0009. Epub 2017 Aug 30.
We develop an algorithm for model selection which allows for the consideration of a combinatorially large number of candidate models governing a dynamical system. The innovation circumvents a disadvantage of standard model selection which typically limits the number of candidate models considered due to the intractability of computing information criteria. Using a recently developed sparse identification of nonlinear dynamics algorithm, the sub-selection of candidate models near the Pareto frontier allows feasible computation of Akaike information criteria (AIC) or Bayes information criteria scores for the remaining candidate models. The information criteria hierarchically ranks the most informative models, enabling the automatic and principled selection of the model with the strongest support in relation to the time-series data. Specifically, we show that AIC scores place each candidate model in the , or category. The method correctly recovers several canonical dynamical systems, including a susceptible-exposed-infectious-recovered disease model, Burgers' equation and the Lorenz equations, identifying the correct dynamical system as the only candidate model with strong support.
我们开发了一种用于模型选择的算法,该算法允许考虑控制动态系统的组合数量众多的候选模型。这一创新克服了标准模型选择的一个缺点,标准模型选择通常由于计算信息准则的难处理性而限制了所考虑的候选模型数量。使用最近开发的非线性动力学稀疏识别算法,在帕累托前沿附近对候选模型进行子选择,可以为其余候选模型可行地计算赤池信息准则(AIC)或贝叶斯信息准则得分。信息准则对信息量最大的模型进行分层排序,从而能够根据时间序列数据自动且有原则地选择得到最强支持的模型。具体而言,我们表明AIC得分将每个候选模型置于“好”“一般”或“差”类别中。该方法正确地恢复了几个典型的动态系统,包括易感-暴露-感染-康复疾病模型、伯格斯方程和洛伦兹方程,将正确的动态系统识别为唯一得到有力支持的候选模型。