The Dartmouth Institute for Health Policy and Clinical Practice, Dartmouth College, Lebanon, NH 03756, USA.
Osteoporos Int. 2012 Feb;23(2):723-32. doi: 10.1007/s00198-011-1619-9. Epub 2011 Apr 12.
Linear regression was applied to data from 275 persons with osteoporosis-related fracture to estimate EQ-5D-US and SF-6D health state values from the Osteoporosis Assessment Questionnaire. The models explained 56% and 58% of the variance in scores, respectively, and root mean square error values (0.096 and 0.085) indicated adequate prediction for use when actual values are unavailable.
This study was conducted to provide models that predict EQ-5D-US and SF-6D societal health state values from the Osteoporosis Assessment Questionnaire (OPAQ).
OPAQ, EQ-5D, and SF-6D data from individuals at two centers with prior osteoporosis-related fracture were used. Fractures were classified by type as hip/hip-like, spine/spine-like, or wrist/wrist-like. Spearman rank correlations between preference-based system (EQ-5D and SF-6D) dimensions and OPAQ subscales were estimated. Linear regression was used to estimate preference-based system health state values based on OPAQ subscales. We assessed models including age, sex, and fracture type and chose the model with the best performance based on the root mean square error (RMSE) estimate.
Among the 275 participants (198 women), with mean age of 68 years (range 50-94), the distribution of fracture types included 10% hip/5% hip-like, 18% spine/11% spine-like, and 24% wrist/18% wrist-like. The final regression model for EQ-5D-US included three OPAQ attributes (physical function, emotional status, and symptoms), predicted 56% of the variance in EQ-5D-US scores, and had a RMSE of 0.096. The final model for SF-6D, which included all four OPAQ dimensions, predicted 58% of the variance in SF-6D scores and had a RMSE of 0.085.
Two models were developed to estimate EQ-5D-US and SF-6D health state values from OPAQ and demonstrated adequate prediction for use when actual values are not available.
线性回归分析应用于 275 例骨质疏松性骨折患者的数据,以从骨质疏松评估问卷中估算 EQ-5D-US 和 SF-6D 健康状况值。模型分别解释了分数的 56%和 58%,均方根误差值(0.096 和 0.085)表明在无法获得实际值时具有足够的预测能力。
本研究旨在提供从骨质疏松评估问卷(OPAQ)中预测 EQ-5D-US 和 SF-6D 社会健康状况值的模型。
使用来自两个中心有既往骨质疏松性骨折的个体的 OPAQ、EQ-5D 和 SF-6D 数据。骨折按类型分为髋/髋样、脊柱/脊柱样或腕/腕样。估计偏好系统(EQ-5D 和 SF-6D)维度与 OPAQ 分量表之间的 Spearman 秩相关。使用线性回归根据 OPAQ 分量表估算偏好系统健康状况值。我们评估了包含年龄、性别和骨折类型的模型,并根据均方根误差(RMSE)估计选择了性能最佳的模型。
在 275 名参与者(198 名女性)中,平均年龄为 68 岁(范围 50-94 岁),骨折类型分布包括 10%髋/5%髋样、18%脊柱/11%脊柱样和 24%腕/18%腕样。EQ-5D-US 的最终回归模型包括 OPAQ 的三个属性(身体功能、情绪状态和症状),预测了 EQ-5D-US 评分的 56%方差,RMSE 为 0.096。SF-6D 的最终模型包括 OPAQ 的所有四个维度,预测了 SF-6D 评分的 58%方差,RMSE 为 0.085。
开发了两个模型来从 OPAQ 估算 EQ-5D-US 和 SF-6D 健康状况值,并且在无法获得实际值时具有足够的预测能力。