Suppr超能文献

蛋白质静电相似性分析的自动化计算框架。

Automated computational framework for the analysis of electrostatic similarities of proteins.

机构信息

Department of Bioengineering, University of California, Riverside, CA 92521, USA.

出版信息

Biotechnol Prog. 2011 Mar-Apr;27(2):316-25. doi: 10.1002/btpr.541. Epub 2011 Jan 14.

Abstract

Charge plays an important role in protein-protein interactions. In the case of excessively charged proteins, their electrostatic potentials contribute to the processes of recognition and binding with other proteins or ligands. We present an automated computational framework for determining the contribution of each charged amino acid to the electrostatic properties of proteins, at atomic resolution level. This framework involves computational alanine scans, calculation of Poisson-Boltzmann electrostatic potentials, calculation of electrostatic similarity distances (ESDs), hierarchical clustering analysis of ESDs, calculation of solvation free energies of association, and visualization of the spatial distributions of electrostatic potentials. The framework is useful to classify families of mutants with similar electrostatic properties and to compare them with the parent proteins in the complex. The alanine scan mutants introduce perturbations in the local electrostatic properties of the proteins and aim in delineating the contribution of each mutated amino acid in the spatial distribution of electrostatic potential, and in biological function when electrostatics is a dominant contributing factor in protein-protein interactions. The framework can be used to design new proteins with tailored electrostatic properties, such as immune system regulators, inhibitors, and vaccines, and in guiding experimental studies. We present an example for the interaction of the immune system protein C3d (the d-fragment of complement protein C3) with its receptor CR2, and we discuss our data in view of a binding site controversy.

摘要

电荷在蛋白质-蛋白质相互作用中起着重要作用。在带电荷过多的蛋白质的情况下,其静电势有助于与其他蛋白质或配体的识别和结合过程。我们提出了一种自动计算框架,用于确定每个带电氨基酸对蛋白质静电特性的贡献,达到原子分辨率水平。该框架涉及计算丙氨酸扫描、泊松-玻尔兹曼静电势计算、静电相似性距离 (ESD) 计算、ESD 的层次聚类分析、结合自由能的溶剂化计算以及静电势的空间分布可视化。该框架可用于对具有相似静电性质的突变体家族进行分类,并将它们与复合物中的母体蛋白进行比较。丙氨酸扫描突变体对蛋白质的局部静电性质产生干扰,旨在描绘每个突变氨基酸在静电势空间分布中的贡献,以及在静电是蛋白质-蛋白质相互作用中的主要影响因素时的生物学功能。该框架可用于设计具有定制静电性质的新型蛋白质,例如免疫系统调节剂、抑制剂和疫苗,并指导实验研究。我们展示了免疫系统蛋白 C3d(补体蛋白 C3 的 d 片段)与其受体 CR2 相互作用的一个例子,并根据结合位点争议讨论了我们的数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验