Suppr超能文献

准确重建肿瘤进展中突变的时间顺序。

Accurate reconstruction of the temporal order of mutations in neoplastic progression.

机构信息

Genomics and Computational Biology Program, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

出版信息

Cancer Prev Res (Phila). 2011 Jul;4(7):1135-44. doi: 10.1158/1940-6207.CAPR-10-0374. Epub 2011 Apr 13.

Abstract

The canonical route from normal tissue to cancer occurs through sequential acquisition of somatic mutations. Many studies have constructed a linear genetic model for tumorigenesis using the genetic alterations associated with samples at different stages of neoplastic progression from cross-sectional data. The common interpretation of these models is that they reflect the temporal order within any given tumor. Linear genetic methods implicitly neglect genetic heterogeneity within a neoplasm; each neoplasm is assumed to consist of one dominant clone. We modeled neoplastic progression of colorectal cancer using an agent-based model of a colon crypt and found clonal heterogeneity within our simulated neoplasms, as observed in vivo. Just 7.3% of cells within neoplasms acquired mutations in the same order as the linear model. In 41% of the simulated neoplasms, no cells acquired mutations in the same order as the linear model. We obtained similarly poor results when comparing the temporal order with oncogenetic tree models inferred from cross-sectional data. However, when we reconstructed the cell lineage of mutations within a neoplasm using several biopsies, we found that 99.7% cells within neoplasms acquired their mutations in an order consistent with the cell lineage mutational order. Thus, we find that using cross-sectional data to infer mutational order is misleading, whereas phylogenetic methods based on sampling intratumor heterogeneity accurately reconstructs the evolutionary history of tumors. In addition, we find evidence that disruption of differentiation is likely the first lesion in progression for most cancers and should be one of the few regularities of neoplastic progression across cancers.

摘要

正常组织向癌症的典型途径是通过连续获得体细胞突变。许多研究使用来自不同肿瘤进展阶段的样本的遗传改变,从横断面上构建了肿瘤发生的线性遗传模型。这些模型的常见解释是,它们反映了任何给定肿瘤内的时间顺序。线性遗传方法隐含地忽略了肿瘤内的遗传异质性;每个肿瘤都假定由一个主要的克隆组成。我们使用结肠隐窝的基于代理的模型来模拟结直肠癌的肿瘤进展,发现我们模拟的肿瘤内存在克隆异质性,这与体内观察到的情况一致。只有 7.3%的肿瘤内细胞按照线性模型的顺序获得了突变。在 41%的模拟肿瘤中,没有细胞按照线性模型的顺序获得突变。当我们将时间顺序与从横断面上推断出的致癌基因树模型进行比较时,我们得到了类似的较差结果。然而,当我们使用几个活检来重建肿瘤内的突变细胞谱系时,我们发现肿瘤内的 99.7%细胞按照与细胞谱系突变顺序一致的顺序获得了突变。因此,我们发现使用横断面数据推断突变顺序是有误导性的,而基于肿瘤内异质性采样的系统发育方法可以准确地重建肿瘤的进化历史。此外,我们发现证据表明,分化中断可能是大多数癌症进展的第一个病变,并且应该是癌症之间肿瘤进展的少数几个规律之一。

相似文献

1
Accurate reconstruction of the temporal order of mutations in neoplastic progression.准确重建肿瘤进展中突变的时间顺序。
Cancer Prev Res (Phila). 2011 Jul;4(7):1135-44. doi: 10.1158/1940-6207.CAPR-10-0374. Epub 2011 Apr 13.
9
Early and multiple origins of metastatic lineages within primary tumors.原发性肿瘤内转移谱系的早期和多源性起源。
Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):2140-5. doi: 10.1073/pnas.1525677113. Epub 2016 Feb 8.

引用本文的文献

2
Temporal recording of mammalian development and precancer.哺乳动物发育和癌前病变的时间记录。
Nature. 2024 Oct;634(8036):1187-1195. doi: 10.1038/s41586-024-07954-4. Epub 2024 Oct 30.
5
Parsimonious Clone Tree Integration in cancer.癌症中的简约克隆树整合
Algorithms Mol Biol. 2022 Mar 14;17(1):3. doi: 10.1186/s13015-022-00209-9.

本文引用的文献

3
Accumulation of driver and passenger mutations during tumor progression.在肿瘤进展过程中积累的驱动突变和乘客突变。
Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18545-50. doi: 10.1073/pnas.1010978107. Epub 2010 Sep 27.
5
Tracing the tumor lineage.追踪肿瘤谱系。
Mol Oncol. 2010 Jun;4(3):267-83. doi: 10.1016/j.molonc.2010.04.010. Epub 2010 May 5.
6
What are the hallmarks of cancer?癌症的特征是什么?
Nat Rev Cancer. 2010 Apr;10(4):232-3. doi: 10.1038/nrc2827.
7
Beneficial mutations and the dynamics of adaptation in asexual populations.有益突变与无性种群的适应动力。
Philos Trans R Soc Lond B Biol Sci. 2010 Apr 27;365(1544):1255-63. doi: 10.1098/rstb.2009.0290.
10
Inferring tumor progression from genomic heterogeneity.从基因组异质性推断肿瘤进展。
Genome Res. 2010 Jan;20(1):68-80. doi: 10.1101/gr.099622.109. Epub 2009 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验