Suppr超能文献

癌症进展模型和适应度景观:多对多的关系。

Cancer progression models and fitness landscapes: a many-to-many relationship.

机构信息

Department of Biochemistry, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas "Alberto Sols" (UAM-CSIC), Madrid 28029, Spain.

出版信息

Bioinformatics. 2018 Mar 1;34(5):836-844. doi: 10.1093/bioinformatics/btx663.

Abstract

MOTIVATION

The identification of constraints, due to gene interactions, in the order of accumulation of mutations during cancer progression can allow us to single out therapeutic targets. Cancer progression models (CPMs) use genotype frequency data from cross-sectional samples to identify these constraints, and return Directed Acyclic Graphs (DAGs) of restrictions where arrows indicate dependencies or constraints. On the other hand, fitness landscapes, which map genotypes to fitness, contain all possible paths of tumor progression. Thus, we expect a correspondence between DAGs from CPMs and the fitness landscapes where evolution happened. But many fitness landscapes-e.g. those with reciprocal sign epistasis-cannot be represented by CPMs.

RESULTS

Using simulated data under 500 fitness landscapes, I show that CPMs' performance (prediction of genotypes that can exist) degrades with reciprocal sign epistasis. There is large variability in the DAGs inferred from each landscape, which is also affected by mutation rate, detection regime and fitness landscape features, in ways that depend on CPM method. Using three cancer datasets, I show that these problems strongly affect the analysis of empirical data: fitness landscapes that are widely different from each other produce data similar to the empirically observed ones and lead to DAGs that infer very different restrictions. Because reciprocal sign epistasis can be common in cancer, these results question the use and interpretation of CPMs.

AVAILABILITY AND IMPLEMENTATION

Code available from Supplementary Material.

CONTACT

ramon.diaz@iib.uam.es.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

鉴定癌症进展过程中突变积累顺序的基因相互作用所导致的约束条件,可以帮助我们确定治疗靶点。癌症进展模型(CPM)使用来自横截面样本的基因型频率数据来识别这些约束条件,并返回受限的有向无环图(DAG),其中箭头表示依赖关系或约束。另一方面,适应度景观将基因型映射到适应度上,包含了肿瘤进展的所有可能路径。因此,我们期望 CPM 中的 DAG 与发生进化的适应度景观之间存在对应关系。但是,许多适应度景观(例如具有相互符号上位性的景观)无法用 CPM 表示。

结果

使用 500 个适应度景观下的模拟数据,我表明 CPM 的性能(预测可能存在的基因型)随着相互符号上位性的出现而下降。从每个景观推断出的 DAG 存在很大的可变性,这也受到突变率、检测机制和适应度景观特征的影响,具体方式取决于 CPM 方法。使用三个癌症数据集,我表明这些问题强烈影响了对经验数据的分析:差异很大的适应度景观产生的数据与经验观察到的数据相似,并导致推断出非常不同的限制的 DAG。由于相互符号上位性在癌症中可能很常见,这些结果质疑了 CPM 的使用和解释。

可用性和实现

可从补充材料中获得代码。

联系方式

ramon.diaz@iib.uam.es

补充信息

补充数据可在 Bioinformatics 在线获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccfb/6031050/9569f7d9b59e/btx663f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验