Suppr超能文献

基于癌症演进模型的连续肿瘤演进的条件预测:接下来是什么基因型?

Conditional prediction of consecutive tumor evolution using cancer progression models: What genotype comes next?

机构信息

Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.

Instituto de Investigaciones Biomédicas 'Alberto Sols' (UAM-CSIC), Madrid, Spain.

出版信息

PLoS Comput Biol. 2021 Dec 21;17(12):e1009055. doi: 10.1371/journal.pcbi.1009055. eCollection 2021 Dec.

Abstract

Accurate prediction of tumor progression is key for adaptive therapy and precision medicine. Cancer progression models (CPMs) can be used to infer dependencies in mutation accumulation from cross-sectional data and provide predictions of tumor progression paths. However, their performance when predicting complete evolutionary trajectories is limited by violations of assumptions and the size of available data sets. Instead of predicting full tumor progression paths, here we focus on short-term predictions, more relevant for diagnostic and therapeutic purposes. We examine whether five distinct CPMs can be used to answer the question "Given that a genotype with n mutations has been observed, what genotype with n + 1 mutations is next in the path of tumor progression?" or, shortly, "What genotype comes next?". Using simulated data we find that under specific combinations of genotype and fitness landscape characteristics CPMs can provide predictions of short-term evolution that closely match the true probabilities, and that some genotype characteristics can be much more relevant than global features. Application of these methods to 25 cancer data sets shows that their use is hampered by a lack of information needed to make principled decisions about method choice. Fruitful use of these methods for short-term predictions requires adapting method's use to local genotype characteristics and obtaining reliable indicators of performance; it will also be necessary to clarify the interpretation of the method's results when key assumptions do not hold.

摘要

准确预测肿瘤进展对于适应性治疗和精准医学至关重要。癌症进展模型(CPMs)可用于从横截面数据中推断突变积累的依赖性,并提供肿瘤进展路径的预测。然而,由于违反假设和可用数据集大小的限制,它们在预测完整进化轨迹时的性能受到限制。我们不预测完整的肿瘤进展路径,而是关注更符合诊断和治疗目的的短期预测。我们研究了五个不同的 CPM 是否可以用于回答“给定观察到具有 n 个突变的基因型,下一个具有 n+1 个突变的基因型在肿瘤进展的路径中是什么?”,或者简而言之,“下一个是什么基因型?”。使用模拟数据,我们发现在特定的基因型和适应度景观特征组合下,CPM 可以提供与真实概率非常匹配的短期进化预测,并且某些基因型特征比全局特征更为重要。将这些方法应用于 25 个癌症数据集表明,由于缺乏用于根据原则做出方法选择决策所需的信息,这些方法的应用受到了阻碍。为了进行短期预测,这些方法的有效使用需要根据局部基因型特征调整方法的使用,并获得可靠的性能指标;当关键假设不成立时,还需要澄清方法结果的解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9c6/8730404/cf13c342619d/pcbi.1009055.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验