Suppr超能文献

存活运动神经元蛋白调控果蝇干细胞的分裂、增殖和分化。

Survival motor neuron protein regulates stem cell division, proliferation, and differentiation in Drosophila.

机构信息

Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom.

出版信息

PLoS Genet. 2011 Apr;7(4):e1002030. doi: 10.1371/journal.pgen.1002030. Epub 2011 Apr 7.

Abstract

Spinal muscular atrophy is a severe neurogenic disease that is caused by mutations in the human survival motor neuron 1 (SMN1) gene. SMN protein is required for the assembly of small nuclear ribonucleoproteins and a dramatic reduction of the protein leads to cell death. It is currently unknown how the reduction of this ubiquitously essential protein can lead to tissue-specific abnormalities. In addition, it is still not known whether the disease is caused by developmental or degenerative defects. Using the Drosophila system, we show that SMN is enriched in postembryonic neuroblasts and forms a concentration gradient in the differentiating progeny. In addition to the developing Drosophila larval CNS, Drosophila larval and adult testes have a striking SMN gradient. When SMN is reduced in postembryonic neuroblasts using MARCM clonal analysis, cell proliferation and clone formation defects occur. These SMN mutant neuroblasts fail to correctly localise Miranda and have reduced levels of snRNAs. When SMN is removed, germline stem cells are lost more frequently. We also show that changes in SMN levels can disrupt the correct timing of cell differentiation. We conclude that highly regulated SMN levels are essential to drive timely cell proliferation and cell differentiation.

摘要

脊髓性肌萎缩症是一种严重的神经源性疾病,由人类生存运动神经元 1 (SMN1) 基因突变引起。SMN 蛋白是小核核糖核蛋白组装所必需的,其蛋白水平的显著降低会导致细胞死亡。目前尚不清楚这种普遍必需的蛋白质的减少如何导致组织特异性异常。此外,仍不清楚疾病是由发育缺陷还是退行性缺陷引起的。我们使用果蝇系统表明,SMN 在胚胎后神经母细胞中富集,并在分化后代中形成浓度梯度。除了发育中的果蝇幼虫中枢神经系统外,果蝇幼虫和成虫的睾丸也有明显的 SMN 梯度。当使用 MARCM 克隆分析在胚胎后神经母细胞中降低 SMN 时,会发生细胞增殖和克隆形成缺陷。这些 SMN 突变神经母细胞不能正确定位 Miranda,并且 snRNA 水平降低。当 SMN 被移除时,生殖干细胞丢失的频率更高。我们还表明,SMN 水平的变化会破坏细胞分化的正确时间。我们得出结论,高度调节的 SMN 水平对于驱动细胞增殖和细胞分化的适时发生是必不可少的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f734/3072375/138c3fc8faad/pgen.1002030.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验