Suppr超能文献

测定红细胞带 3 胞质域与锚蛋白重复 13-24 之间复合物的结构模型。

Determination of structural models of the complex between the cytoplasmic domain of erythrocyte band 3 and ankyrin-R repeats 13-24.

机构信息

Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232-0615, USA.

出版信息

J Biol Chem. 2011 Jun 10;286(23):20746-57. doi: 10.1074/jbc.M111.230326. Epub 2011 Apr 14.

Abstract

The adaptor protein ankyrin-R interacts via its membrane binding domain with the cytoplasmic domain of the anion exchange protein (AE1) and via its spectrin binding domain with the spectrin-based membrane skeleton in human erythrocytes. This set of interactions provides a bridge between the lipid bilayer and the membrane skeleton, thereby stabilizing the membrane. Crystal structures for the dimeric cytoplasmic domain of AE1 (cdb3) and for a 12-ankyrin repeat segment (repeats 13-24) from the membrane binding domain of ankyrin-R (AnkD34) have been reported. However, structural data on how these proteins assemble to form a stable complex have not been reported. In the current studies, site-directed spin labeling, in combination with electron paramagnetic resonance (EPR) and double electron-electron resonance, has been utilized to map the binding interfaces of the two proteins in the complex and to obtain inter-protein distance constraints. These data have been utilized to construct a family of structural models that are consistent with the full range of experimental data. These models indicate that an extensive area on the peripheral domain of cdb3 binds to ankyrin repeats 18-20 on the top loop surface of AnkD34 primarily through hydrophobic interactions. This is a previously uncharacterized surface for binding of cdb3 to AnkD34. Because a second dimer of cdb3 is known to bind to ankyrin repeats 7-12 of the membrane binding domain of ankyrin-R, the current models have significant implications regarding the structural nature of a tetrameric form of AE1 that is hypothesized to be involved in binding to full-length ankyrin-R in the erythrocyte membrane.

摘要

衔接蛋白 ankyrin-R 通过其膜结合域与阴离子交换蛋白 (AE1) 的细胞质域相互作用,并通过其 spectrin 结合域与人类红细胞中的 spectrin 基底膜骨架相互作用。这组相互作用在脂质双层和膜骨架之间提供了桥梁,从而稳定了膜。已经报道了 AE1 的二聚体细胞质结构域 (cdb3) 和来自 ankyrin-R 的膜结合结构域 (AnkD34) 的 12-ankyrin 重复片段 (重复 13-24) 的晶体结构。然而,关于这些蛋白质如何组装形成稳定复合物的结构数据尚未报道。在当前的研究中,已利用定点旋转标记,结合电子顺磁共振 (EPR) 和双电子电子共振,来绘制复合物中两种蛋白质的结合界面,并获得蛋白质间的距离约束。这些数据已用于构建一系列结构模型,这些模型与全范围的实验数据一致。这些模型表明,cdb3 的外周结构域的一个广泛区域主要通过疏水相互作用与 AnkD34 顶部环表面的重复 18-20 结合。这是 cdb3 与 AnkD34 结合的一个以前未表征的表面。因为已知第二个 cdb3 二聚体与 ankyrin-R 的膜结合结构域的重复 7-12 结合,当前的模型对于假定参与与红细胞膜中全长 ankyrin-R 结合的 AE1 四聚体形式的结构性质具有重要意义。

相似文献

1
Determination of structural models of the complex between the cytoplasmic domain of erythrocyte band 3 and ankyrin-R repeats 13-24.
J Biol Chem. 2011 Jun 10;286(23):20746-57. doi: 10.1074/jbc.M111.230326. Epub 2011 Apr 14.
2
Identification of contact sites between ankyrin and band 3 in the human erythrocyte membrane.
Biochemistry. 2012 Aug 28;51(34):6838-46. doi: 10.1021/bi300693k. Epub 2012 Aug 14.
4
Rate of rupture and reattachment of the band 3-ankyrin bridge on the human erythrocyte membrane.
J Biol Chem. 2006 Aug 4;281(31):22360-22366. doi: 10.1074/jbc.M513839200. Epub 2006 Jun 8.
5
An 11-amino acid beta-hairpin loop in the cytoplasmic domain of band 3 is responsible for ankyrin binding in mouse erythrocytes.
Proc Natl Acad Sci U S A. 2007 Aug 28;104(35):13972-7. doi: 10.1073/pnas.0706266104. Epub 2007 Aug 22.
7
Global transformation of erythrocyte properties via engagement of an SH2-like sequence in band 3.
Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):13732-13737. doi: 10.1073/pnas.1611904113. Epub 2016 Nov 15.
10
Identification of adducin-binding residues on the cytoplasmic domain of erythrocyte membrane protein, band 3.
Biochem J. 2016 Oct 1;473(19):3147-58. doi: 10.1042/BCJ20160328. Epub 2016 Jul 19.

引用本文的文献

1
Protein Modeling with DEER Spectroscopy.
Annu Rev Biophys. 2025 May;54(1):35-57. doi: 10.1146/annurev-biophys-030524-013431. Epub 2024 Dec 17.
2
A novel approach to modeling side chain ensembles of the bifunctional spin label RX.
bioRxiv. 2023 May 24:2023.05.24.542139. doi: 10.1101/2023.05.24.542139.
3
Comparative evaluation of spin-label modeling methods for protein structural studies.
Biophys J. 2022 Sep 20;121(18):3508-3519. doi: 10.1016/j.bpj.2022.08.002. Epub 2022 Aug 10.
4
Architecture of the human erythrocyte ankyrin-1 complex.
Nat Struct Mol Biol. 2022 Jul;29(7):706-718. doi: 10.1038/s41594-022-00792-w. Epub 2022 Jul 14.
5
Structure, dynamics and assembly of the ankyrin complex on human red blood cell membrane.
Nat Struct Mol Biol. 2022 Jul;29(7):698-705. doi: 10.1038/s41594-022-00779-7. Epub 2022 Jun 2.
6
Protein functional dynamics from the rigorous global analysis of DEER data: Conditions, components, and conformations.
J Gen Physiol. 2021 Nov 1;153(11). doi: 10.1085/jgp.201711954. Epub 2021 Sep 16.
7
Methodology for rigorous modeling of protein conformational changes by Rosetta using DEER distance restraints.
PLoS Comput Biol. 2021 Jun 16;17(6):e1009107. doi: 10.1371/journal.pcbi.1009107. eCollection 2021 Jun.
8
Evidence of a structural and functional ammonium transporter RhBG·anion exchanger 1·ankyrin-G complex in kidney epithelial cells.
J Biol Chem. 2015 Mar 13;290(11):6925-36. doi: 10.1074/jbc.M114.610048. Epub 2015 Jan 23.
9
Single-molecule FRET reveals hidden complexity in a protein energy landscape.
Structure. 2015 Jan 6;23(1):190-198. doi: 10.1016/j.str.2014.10.023.
10
mtsslSuite: spin labelling, trilateration and distance-constrained rigid body docking in PyMOL.
Mol Phys. 2013 Oct;111(18-19):2757-2766. doi: 10.1080/00268976.2013.809804. Epub 2013 Jul 1.

本文引用的文献

1
Rotamer libraries of spin labelled cysteines for protein studies.
Phys Chem Chem Phys. 2011 Feb 14;13(6):2356-66. doi: 10.1039/c0cp01865a. Epub 2010 Nov 30.
2
Ankyrin-based cellular pathways for cardiac ion channel and transporter targeting and regulation.
Semin Cell Dev Biol. 2011 Apr;22(2):166-70. doi: 10.1016/j.semcdb.2010.09.013. Epub 2010 Oct 8.
4
Practically useful: what the Rosetta protein modeling suite can do for you.
Biochemistry. 2010 Apr 13;49(14):2987-98. doi: 10.1021/bi902153g.
5
Ankyrin-based patterning of membrane microdomains: new insights into a novel class of cardiovascular diseases.
J Cardiovasc Pharmacol. 2009 Aug;54(2):106-15. doi: 10.1097/FJC.0b013e3181b2b6ed.
6
Solution and membrane-bound conformations of the tandem C2A and C2B domains of synaptotagmin 1: Evidence for bilayer bridging.
J Mol Biol. 2009 Jul 31;390(5):913-23. doi: 10.1016/j.jmb.2009.06.007. Epub 2009 Jun 6.
7
Mapping electron paramagnetic resonance spin label conformations by the simulated scaling method.
J Am Chem Soc. 2007 Nov 14;129(45):13840-6. doi: 10.1021/ja071404v. Epub 2007 Oct 19.
8
An 11-amino acid beta-hairpin loop in the cytoplasmic domain of band 3 is responsible for ankyrin binding in mouse erythrocytes.
Proc Natl Acad Sci U S A. 2007 Aug 28;104(35):13972-7. doi: 10.1073/pnas.0706266104. Epub 2007 Aug 22.
9
High-resolution structure of a Na+/H+ antiporter dimer obtained by pulsed electron paramagnetic resonance distance measurements.
Biophys J. 2007 Nov 15;93(10):3675-83. doi: 10.1529/biophysj.107.109769. Epub 2007 Aug 17.
10
Structure of the cytoplasmic domain of erythrocyte band 3 hereditary spherocytosis variant P327R: band 3 Tuscaloosa.
Biochemistry. 2007 Sep 11;46(36):10248-57. doi: 10.1021/bi700948p. Epub 2007 Aug 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验