Suppr超能文献

细菌趋化性信号传导的热稳定性。

Thermal robustness of signaling in bacterial chemotaxis.

机构信息

Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany.

出版信息

Cell. 2011 Apr 15;145(2):312-21. doi: 10.1016/j.cell.2011.03.013.

Abstract

Temperature is a global factor that affects the performance of all intracellular networks. Robustness against temperature variations is thus expected to be an essential network property, particularly in organisms without inherent temperature control. Here, we combine experimental analyses with computational modeling to investigate thermal robustness of signaling in chemotaxis of Escherichia coli, a relatively simple and well-established model for systems biology. We show that steady-state and kinetic pathway parameters that are essential for chemotactic performance are indeed temperature-compensated in the entire physiological range. Thermal robustness of steady-state pathway output is ensured at several levels by mutual compensation of temperature effects on activities of individual pathway components. Moreover, the effect of temperature on adaptation kinetics is counterbalanced by preprogrammed temperature dependence of enzyme synthesis and stability to achieve nearly optimal performance at the growth temperature. Similar compensatory mechanisms are expected to ensure thermal robustness in other systems.

摘要

温度是影响所有细胞内网络性能的全球性因素。因此,对温度变化的稳健性预计将成为一个基本的网络特性,尤其是在没有固有温度控制的生物体中。在这里,我们结合实验分析和计算建模来研究大肠杆菌趋化作用中信号传导的热稳定性,大肠杆菌是系统生物学中一个相对简单且成熟的模型。我们表明,对于趋化作用性能至关重要的稳态和动力学途径参数确实在整个生理范围内得到了温度补偿。通过个体途径成分活性的温度效应相互补偿,在几个水平上确保了稳态途径输出的热稳定性。此外,通过酶合成和稳定性的预编程温度依赖性来抵消温度对适应动力学的影响,从而在生长温度下实现近乎最佳的性能。预计类似的补偿机制将确保其他系统中的热稳定性。

相似文献

2
Design principles of a bacterial signalling network.细菌信号网络的设计原则。
Nature. 2005 Nov 24;438(7067):504-7. doi: 10.1038/nature04228.
8
A zipped-helix cap potentiates HAMP domain control of chemoreceptor signaling.拉链螺旋帽增强了 HAMP 结构域对化学感受器信号的控制。
Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):E3519-E3528. doi: 10.1073/pnas.1721554115. Epub 2018 Mar 26.
9
Robustness in simple biochemical networks.简单生化网络中的稳健性。
Nature. 1997 Jun 26;387(6636):913-7. doi: 10.1038/43199.
10
FRET Analysis of the Chemotaxis Pathway Response.趋化途径反应的荧光共振能量转移分析
Methods Mol Biol. 2018;1729:107-126. doi: 10.1007/978-1-4939-7577-8_11.

引用本文的文献

8
Behavioral Variability and Phenotypic Diversity in Bacterial Chemotaxis.细菌趋性行为的可变性和表型多样性。
Annu Rev Biophys. 2018 May 20;47:595-616. doi: 10.1146/annurev-biophys-062215-010954. Epub 2018 Apr 4.

本文引用的文献

3
Spatial organization in bacterial chemotaxis.细菌趋化作用中的空间组织。
EMBO J. 2010 Aug 18;29(16):2724-33. doi: 10.1038/emboj.2010.178.
6
Chemotaxis: how bacteria use memory.趋化作用:细菌如何利用记忆。
Biol Chem. 2009 Nov;390(11):1097-104. doi: 10.1515/BC.2009.130.
7
10
Keeping the beat in the rising heat.在不断升高的热度中保持节奏。
Cell. 2009 May 15;137(4):602-4. doi: 10.1016/j.cell.2009.04.051.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验