Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany.
Cell. 2011 Apr 15;145(2):312-21. doi: 10.1016/j.cell.2011.03.013.
Temperature is a global factor that affects the performance of all intracellular networks. Robustness against temperature variations is thus expected to be an essential network property, particularly in organisms without inherent temperature control. Here, we combine experimental analyses with computational modeling to investigate thermal robustness of signaling in chemotaxis of Escherichia coli, a relatively simple and well-established model for systems biology. We show that steady-state and kinetic pathway parameters that are essential for chemotactic performance are indeed temperature-compensated in the entire physiological range. Thermal robustness of steady-state pathway output is ensured at several levels by mutual compensation of temperature effects on activities of individual pathway components. Moreover, the effect of temperature on adaptation kinetics is counterbalanced by preprogrammed temperature dependence of enzyme synthesis and stability to achieve nearly optimal performance at the growth temperature. Similar compensatory mechanisms are expected to ensure thermal robustness in other systems.
温度是影响所有细胞内网络性能的全球性因素。因此,对温度变化的稳健性预计将成为一个基本的网络特性,尤其是在没有固有温度控制的生物体中。在这里,我们结合实验分析和计算建模来研究大肠杆菌趋化作用中信号传导的热稳定性,大肠杆菌是系统生物学中一个相对简单且成熟的模型。我们表明,对于趋化作用性能至关重要的稳态和动力学途径参数确实在整个生理范围内得到了温度补偿。通过个体途径成分活性的温度效应相互补偿,在几个水平上确保了稳态途径输出的热稳定性。此外,通过酶合成和稳定性的预编程温度依赖性来抵消温度对适应动力学的影响,从而在生长温度下实现近乎最佳的性能。预计类似的补偿机制将确保其他系统中的热稳定性。