Barkai N, Leibler S
Department of Physics, Princeton University, New Jersey 08544, USA.
Nature. 1997 Jun 26;387(6636):913-7. doi: 10.1038/43199.
Cells use complex networks of interacting molecular components to transfer and process information. These "computational devices of living cells" are responsible for many important cellular processes, including cell-cycle regulation and signal transduction. Here we address the issue of the sensitivity of the networks to variations in their biochemical parameters. We propose a mechanism for robust adaptation in simple signal transduction networks. We show that this mechanism applies in particular to bacterial chemotaxis. This is demonstrated within a quantitative model which explains, in a unified way, many aspects of chemotaxis, including proper responses to chemical gradients. The adaptation property is a consequence of the network's connectivity and does not require the 'fine-tuning' of parameters. We argue that the key properties of biochemical networks should be robust in order to ensure their proper functioning.
细胞利用相互作用的分子成分组成的复杂网络来传递和处理信息。这些“活细胞的计算装置”负责许多重要的细胞过程,包括细胞周期调控和信号转导。在这里,我们探讨网络对其生化参数变化的敏感性问题。我们提出了一种在简单信号转导网络中实现稳健适应的机制。我们表明,这种机制特别适用于细菌趋化作用。这在一个定量模型中得到了证明,该模型以统一的方式解释了趋化作用的许多方面,包括对化学梯度的适当反应。适应特性是网络连通性的结果,不需要对参数进行“微调”。我们认为,生化网络的关键特性应该是稳健的,以确保其正常运作。