Suppr超能文献

秀丽隐杆线虫胚胎中的左右模式形成:独特机制与共同原理。

Left-right patterning in the C. elegans embryo: Unique mechanisms and common principles.

作者信息

Pohl Christian

机构信息

Developmental Biology Program; Sloan-Kettering Institute; New York, NY USA.

出版信息

Commun Integr Biol. 2011 Jan;4(1):34-40. doi: 10.4161/cib.4.1.14144.

Abstract

The development of bilateral symmetry during the evolution of species probably 600 million years ago brought about several important innovations: It fostered efficient locomotion, streamlining and favored the development of a central nervous system through cephalization. However, to increase their functional capacities, many organisms exhibit chirality by breaking their superficial left-right (l-r) symmetry, which manifests in the lateralization of the nervous system or the l-r asymmetry of internal organs. In most bilateria, the mechanisms that maintain consistent l-r asymmetry throughout development are poorly understood. This review highlights insights into mechanisms that couple early embryonic l-r symmetry breaking to subsequent l-r patterning in the roundworm Caenorhabditis elegans. A recently identified strategy for l-r patterning in the early C. elegans embryo is discussed, the spatial separation of midline and anteroposterior axis, which relies on a rotational cellular rearrangement and non-canonical Wnt signaling. Evidence for a general relevance of rotational/torsional rearrangements during organismal l-r patterning and for non-canonical Wnt signaling/planar cell polarity as a common signaling mechanism to maintain l-r asymmetry is presented.

摘要

在大约6亿年前的物种进化过程中,两侧对称的发展带来了几项重要的创新:它促进了高效的运动,使身体更加流线型,并通过头部化促进了中枢神经系统的发展。然而,为了提高其功能能力,许多生物体通过打破其表面的左右(l-r)对称性来表现出手性,这表现为神经系统的侧向化或内部器官的左右不对称。在大多数两侧对称动物中,在整个发育过程中维持一致的左右不对称的机制仍知之甚少。这篇综述重点介绍了对秀丽隐杆线虫中早期胚胎左右对称性打破与随后的左右模式形成之间联系的机制的见解。讨论了秀丽隐杆线虫早期胚胎中一种最近确定的左右模式形成策略,即中线和前后轴的空间分离,这依赖于旋转细胞重排和非经典Wnt信号通路。本文还提供了证据,证明旋转/扭转重排在生物体左右模式形成过程中的普遍相关性,以及非经典Wnt信号通路/平面细胞极性作为维持左右不对称的常见信号机制。

相似文献

1
Left-right patterning in the C. elegans embryo: Unique mechanisms and common principles.
Commun Integr Biol. 2011 Jan;4(1):34-40. doi: 10.4161/cib.4.1.14144.
2
Role of Wnt signaling and planar cell polarity in left-right asymmetry.
Curr Top Dev Biol. 2023;153:181-193. doi: 10.1016/bs.ctdb.2023.01.008. Epub 2023 Feb 20.
3
4
Diversity of left-right symmetry breaking strategy in animals.
F1000Res. 2020 Feb 19;9. doi: 10.12688/f1000research.21670.1. eCollection 2020.
5
Early embryonic programming of neuronal left/right asymmetry in C. elegans.
Curr Biol. 2006 Dec 5;16(23):2279-92. doi: 10.1016/j.cub.2006.09.041.
6
Planar Asymmetries in the Embryo Emerge by Differential Retention of aPARs at Cell-Cell Contacts.
Front Cell Dev Biol. 2019 Sep 27;7:209. doi: 10.3389/fcell.2019.00209. eCollection 2019.
9
10
Molecular and cellular basis of left-right asymmetry in vertebrates.
Proc Jpn Acad Ser B Phys Biol Sci. 2020;96(7):273-296. doi: 10.2183/pjab.96.021.

引用本文的文献

2
Stability of asymmetric cell division: A deformable cell model of cytokinesis applied to C. elegans.
Biophys J. 2023 May 16;122(10):1858-1867. doi: 10.1016/j.bpj.2023.04.017. Epub 2023 Apr 20.
3
Delineating the mechanisms and design principles of embryogenesis using high-resolution imaging data and computational modeling.
Comput Struct Biotechnol J. 2022 Aug 19;20:5500-5515. doi: 10.1016/j.csbj.2022.08.024. eCollection 2022.
5
Heterotaxy in Caenorhabditis: widespread natural variation in left-right arrangement of the major organs.
Philos Trans R Soc Lond B Biol Sci. 2016 Dec 19;371(1710). doi: 10.1098/rstb.2015.0404.
6
Conserved roles for cytoskeletal components in determining laterality.
Integr Biol (Camb). 2016 Mar 14;8(3):267-86. doi: 10.1039/c5ib00281h.
7
Left-right asymmetry in the light of TOR: An update on what we know so far.
Biol Cell. 2015 Sep;107(9):306-18. doi: 10.1111/boc.201400094. Epub 2015 Jun 11.
8
Diversity and convergence in the mechanisms establishing L/R asymmetry in metazoa.
EMBO Rep. 2014 Sep;15(9):926-37. doi: 10.15252/embr.201438972. Epub 2014 Aug 22.
9
It's never too early to get it Right: A conserved role for the cytoskeleton in left-right asymmetry.
Commun Integr Biol. 2013 Nov 1;6(6):e27155. doi: 10.4161/cib.27155. Epub 2013 Nov 14.
10
A unified model for left-right asymmetry? Comparison and synthesis of molecular models of embryonic laterality.
Dev Biol. 2013 Jul 1;379(1):1-15. doi: 10.1016/j.ydbio.2013.03.021. Epub 2013 Apr 10.

本文引用的文献

1
2
Coupling of apoptosis and L/R patterning controls stepwise organ looping.
Curr Biol. 2010 Oct 12;20(19):1773-8. doi: 10.1016/j.cub.2010.08.056. Epub 2010 Sep 9.
3
Planar cell polarity breaks bilateral symmetry by controlling ciliary positioning.
Nature. 2010 Jul 15;466(7304):378-82. doi: 10.1038/nature09129. Epub 2010 Jun 20.
4
Left-right asymmetric morphogenesis of the anterior midgut depends on the activation of a non-muscle myosin II in Drosophila.
Dev Biol. 2010 Aug 15;344(2):693-706. doi: 10.1016/j.ydbio.2010.05.501. Epub 2010 May 27.
5
Lophotrochozoa get into the game: the nodal pathway and left/right asymmetry in bilateria.
Cold Spring Harb Symp Quant Biol. 2009;74:281-7. doi: 10.1101/sqb.2009.74.044. Epub 2010 Apr 22.
6
Vangl2 directs the posterior tilting and asymmetric localization of motile primary cilia.
Nat Cell Biol. 2010 Apr;12(4):407-12. doi: 10.1038/ncb2042. Epub 2010 Mar 21.
7
The Wnt pathway controls cell death engulfment, spindle orientation, and migration through CED-10/Rac.
PLoS Biol. 2010 Feb 2;8(2):e1000297. doi: 10.1371/journal.pbio.1000297.
8
Planar polarization of node cells determines the rotational axis of node cilia.
Nat Cell Biol. 2010 Feb;12(2):170-6. doi: 10.1038/ncb2020. Epub 2010 Jan 24.
9
Chiral blastomere arrangement dictates zygotic left-right asymmetry pathway in snails.
Nature. 2009 Dec 10;462(7274):790-4. doi: 10.1038/nature08597.
10
Disorders of left-right asymmetry: heterotaxy and situs inversus.
Am J Med Genet C Semin Med Genet. 2009 Nov 15;151C(4):307-17. doi: 10.1002/ajmg.c.30228.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验