Suppr超能文献

学习相关的前馈抑制性连接生长对于记忆精度是必需的。

Learning-related feedforward inhibitory connectivity growth required for memory precision.

机构信息

Friedrich Miescher Institute, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.

出版信息

Nature. 2011 May 26;473(7348):514-8. doi: 10.1038/nature09946. Epub 2011 May 1.

Abstract

In the adult brain, new synapses are formed and pre-existing ones are lost, but the function of this structural plasticity has remained unclear. Learning of new skills is correlated with formation of new synapses. These may directly encode new memories, but they may also have more general roles in memory encoding and retrieval processes. Here we investigated how mossy fibre terminal complexes at the entry of hippocampal and cerebellar circuits rearrange upon learning in mice, and what is the functional role of the rearrangements. We show that one-trial and incremental learning lead to robust, circuit-specific, long-lasting and reversible increases in the numbers of filopodial synapses onto fast-spiking interneurons that trigger feedforward inhibition. The increase in feedforward inhibition connectivity involved a majority of the presynaptic terminals, restricted the numbers of c-Fos-expressing postsynaptic neurons at memory retrieval, and correlated temporally with the quality of the memory. We then show that for contextual fear conditioning and Morris water maze learning, increased feedforward inhibition connectivity by hippocampal mossy fibres has a critical role for the precision of the memory and the learned behaviour. In the absence of mossy fibre long-term potentiation in Rab3a(-/-) mice, c-Fos ensemble reorganization and feedforward inhibition growth were both absent in CA3 upon learning, and the memory was imprecise. By contrast, in the absence of adducin 2 (Add2; also known as β-adducin) c-Fos reorganization was normal, but feedforward inhibition growth was abolished. In parallel, c-Fos ensembles in CA3 were greatly enlarged, and the memory was imprecise. Feedforward inhibition growth and memory precision were both rescued by re-expression of Add2 specifically in hippocampal mossy fibres. These results establish a causal relationship between learning-related increases in the numbers of defined synapses and the precision of learning and memory in the adult. The results further relate plasticity and feedforward inhibition growth at hippocampal mossy fibres to the precision of hippocampus-dependent memories.

摘要

在成人大脑中,新的突触形成,旧的突触消失,但这种结构可塑性的功能仍不清楚。新技能的学习与新突触的形成有关。这些突触可能直接编码新的记忆,但它们也可能在记忆编码和检索过程中发挥更普遍的作用。在这里,我们研究了在学习过程中,海马和小脑回路入口处的苔藓纤维末梢复合体如何发生重排,以及这种重排的功能作用是什么。我们发现,一次学习和递增学习导致苔藓纤维触发前馈抑制的快速放电中间神经元上的丝状突触数量出现稳健、特定于回路、持久和可逆的增加。前馈抑制连接的增加涉及大多数突触前末梢,限制了记忆检索时表达 c-Fos 的突触后神经元的数量,并与记忆的质量在时间上相关。然后我们发现,对于情景性恐惧条件反射和 Morris 水迷宫学习,海马苔藓纤维的前馈抑制连接增加对记忆的准确性和学习行为具有关键作用。在 Rab3a(-/-) 小鼠中缺乏苔藓纤维长时程增强作用的情况下,学习时 CA3 中既没有 c-Fos 集合的重排,也没有前馈抑制的生长,记忆也不准确。相比之下,在缺乏衔接蛋白 2 (Add2; 也称为β-衔接蛋白)的情况下,c-Fos 重排正常,但前馈抑制生长被废除。与此平行的是,CA3 中的 c-Fos 集合大大扩大,记忆也不准确。仅在海马苔藓纤维中特异性重新表达 Add2 就可以挽救前馈抑制生长和记忆精度。这些结果在成人大脑中建立了与特定突触数量增加相关的学习和记忆精度之间的因果关系。结果进一步将海马苔藓纤维的可塑性和前馈抑制生长与海马依赖记忆的精度联系起来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验