Suppr超能文献

p38 蛋白激酶在配体非依赖性的 I 型干扰素受体 IFNAR1 链泛素化和下调中的作用。

Role of p38 protein kinase in the ligand-independent ubiquitination and down-regulation of the IFNAR1 chain of type I interferon receptor.

机构信息

Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

出版信息

J Biol Chem. 2011 Jun 24;286(25):22069-76. doi: 10.1074/jbc.M111.238766. Epub 2011 May 3.

Abstract

Phosphorylation-dependent ubiquitination and degradation of the IFNAR1 chain of type I interferon (IFN) receptor is a robust and specific mechanism that limits the magnitude and duration of IFNα/β signaling. Besides the ligand-inducible IFNAR1 degradation, the existence of an "inside-out" signaling that accelerates IFNAR1 turnover in the cells undergoing the endoplasmic reticulum (ER) stress and activated unfolded protein responses has been recently described. The latter pathway does not require either presence of ligands (IFNα/β) or catalytic activity of Janus kinases (JAK). Instead, this pathway relies on activation of the PKR-like ER kinase (PERK) and ensuing specific priming phosphorylation of IFNAR1. Here, we describe studies that identify the stress activated p38 protein kinase as an important regulator of IFNAR1 that acts downstream of PERK. Results of the experiments using pharmacologic p38 kinase inhibitors, RNA interference approach, and cells from p38α knock-out mice suggest that p38 kinase activity is required for priming phosphorylation of IFNAR1 in cells undergoing unfolded protein response. We further demonstrate an important role of p38 kinase in the ligand-independent stimulation of IFNAR1 ubiquitination and degradation and ensuing attenuation of IFNα/β signaling and anti-viral defenses. We discuss the distinct importance of p38 kinase in regulating the overall responses to type I IFN in cells that have been already exposed to IFNα/β versus those cells that are yet to encounter these cytokines.

摘要

磷酸化依赖性泛素化和降解 I 型干扰素(IFN)受体的 IFNAR1 链是一种强大而特异的机制,可限制 IFNα/β信号的幅度和持续时间。除了配体诱导的 IFNAR1 降解外,最近还描述了一种“内-外”信号,该信号可加速内质网 (ER) 应激和激活未折叠蛋白反应的细胞中 IFNAR1 的周转率。后一种途径既不需要配体(IFNα/β)的存在,也不需要 Janus 激酶(JAK)的催化活性。相反,该途径依赖于 PKR 样 ER 激酶(PERK)的激活以及随后 IFNAR1 的特异性初始磷酸化。在这里,我们描述了确定应激激活的 p38 蛋白激酶作为 IFNAR1 的重要调节剂的研究,该调节剂在 PERK 下游起作用。使用药理 p38 激酶抑制剂、RNA 干扰方法和 p38α 敲除小鼠的细胞进行的实验结果表明,p38 激酶活性是细胞中未折叠蛋白反应时 IFNAR1 初始磷酸化所必需的。我们进一步证明了 p38 激酶在配体非依赖性刺激 IFNAR1 泛素化和降解以及随后减弱 IFNα/β信号和抗病毒防御中的重要作用。我们讨论了 p38 激酶在调节已接触 IFNα/β的细胞与尚未接触这些细胞的细胞对 I 型 IFN 的整体反应中的不同重要性。

相似文献

2
Inducible priming phosphorylation promotes ligand-independent degradation of the IFNAR1 chain of type I interferon receptor.
J Biol Chem. 2010 Jan 22;285(4):2318-25. doi: 10.1074/jbc.M109.071498. Epub 2009 Nov 30.
3
Ligand-stimulated downregulation of the alpha interferon receptor: role of protein kinase D2.
Mol Cell Biol. 2011 Feb;31(4):710-20. doi: 10.1128/MCB.01154-10. Epub 2010 Dec 20.
4
Pathogen recognition receptor signaling accelerates phosphorylation-dependent degradation of IFNAR1.
PLoS Pathog. 2011 Jun;7(6):e1002065. doi: 10.1371/journal.ppat.1002065. Epub 2011 Jun 9.
6
Ligand-independent pathway that controls stability of interferon alpha receptor.
Biochem Biophys Res Commun. 2008 Mar 7;367(2):388-93. doi: 10.1016/j.bbrc.2007.12.137. Epub 2007 Dec 31.
7
Protein tyrosine phosphatase 1B is a key regulator of IFNAR1 endocytosis and a target for antiviral therapies.
Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19226-31. doi: 10.1073/pnas.1211491109. Epub 2012 Nov 5.
8
Inflammatory signaling compromises cell responses to interferon alpha.
Oncogene. 2012 Jan 12;31(2):161-72. doi: 10.1038/onc.2011.221. Epub 2011 Jun 13.
10
Mammalian casein kinase 1alpha and its leishmanial ortholog regulate stability of IFNAR1 and type I interferon signaling.
Mol Cell Biol. 2009 Dec;29(24):6401-12. doi: 10.1128/MCB.00478-09. Epub 2009 Oct 5.

引用本文的文献

2
Radiation Therapy and Myeloid-Derived Suppressor Cells: Breaking Down Their Cancerous Partnership.
Int J Radiat Oncol Biol Phys. 2024 May 1;119(1):42-55. doi: 10.1016/j.ijrobp.2023.11.050. Epub 2023 Nov 30.
3
Secreted LRPAP1 binds and triggers IFNAR1 degradation to facilitate virus evasion from cellular innate immunity.
Signal Transduct Target Ther. 2023 Sep 25;8(1):374. doi: 10.1038/s41392-023-01630-1.
4
Protection of Regulatory T Cells from Fragility and Inactivation in the Tumor Microenvironment.
Cancer Immunol Res. 2022 Dec 2;10(12):1490-1505. doi: 10.1158/2326-6066.CIR-22-0295.
5
Targeting PARP11 to avert immunosuppression and improve CAR T therapy in solid tumors.
Nat Cancer. 2022 Jul;3(7):808-820. doi: 10.1038/s43018-022-00383-0. Epub 2022 May 30.
7
Suppression of Interferon-α Treatment Response by Host Negative Factors in Hepatitis B Virus Infection.
Front Med (Lausanne). 2021 Nov 24;8:784172. doi: 10.3389/fmed.2021.784172. eCollection 2021.
8
Bridging Radiotherapy to Immunotherapy: The IFN-JAK-STAT Axis.
Int J Mol Sci. 2021 Nov 14;22(22):12295. doi: 10.3390/ijms222212295.
9
Degradation of WTAP blocks antiviral responses by reducing the m A levels of IRF3 and IFNAR1 mRNA.
EMBO Rep. 2021 Nov 4;22(11):e52101. doi: 10.15252/embr.202052101. Epub 2021 Sep 1.
10
SARS-CoV-2 Disrupts Proximal Elements in the JAK-STAT Pathway.
J Virol. 2021 Sep 9;95(19):e0086221. doi: 10.1128/JVI.00862-21.

本文引用的文献

1
Ligand-stimulated downregulation of the alpha interferon receptor: role of protein kinase D2.
Mol Cell Biol. 2011 Feb;31(4):710-20. doi: 10.1128/MCB.01154-10. Epub 2010 Dec 20.
2
Ubiquitination-dependent regulation of signaling receptors in cancer.
Genes Cancer. 2010 Jul;1(7):725-34. doi: 10.1177/1947601910382901.
3
Inducible priming phosphorylation promotes ligand-independent degradation of the IFNAR1 chain of type I interferon receptor.
J Biol Chem. 2010 Jan 22;285(4):2318-25. doi: 10.1074/jbc.M109.071498. Epub 2009 Nov 30.
4
Mammalian casein kinase 1alpha and its leishmanial ortholog regulate stability of IFNAR1 and type I interferon signaling.
Mol Cell Biol. 2009 Dec;29(24):6401-12. doi: 10.1128/MCB.00478-09. Epub 2009 Oct 5.
5
Type I interferon (IFN)-dependent activation of Mnk1 and its role in the generation of growth inhibitory responses.
Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):12097-102. doi: 10.1073/pnas.0900562106. Epub 2009 Jul 2.
8
PERK-dependent regulation of IAP translation during ER stress.
Oncogene. 2009 Feb 12;28(6):910-20. doi: 10.1038/onc.2008.428. Epub 2008 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验