Suppr超能文献

细菌、真菌和植物中生物通讯的统一分类

Uniform categorization of biocommunication in bacteria, fungi and plants.

作者信息

Witzany Günther

机构信息

Guenther Witzany, Telos-Philosophische Praxis, Vogelsangstrasse 18c, A-5111-Buermoos, Austria.

出版信息

World J Biol Chem. 2010 May 26;1(5):160-80. doi: 10.4331/wjbc.v1.i5.160. Epub 2010 May 28.

Abstract

This article describes a coherent biocommunication categorization for the kingdoms of bacteria, fungi and plants. The investigation further shows that, besides biotic sign use in trans-, inter- and intraorganismic communication processes, a common trait is interpretation of abiotic influences as indicators to generate an appropriate adaptive behaviour. Far from being mechanistic interactions, communication processes within organisms and between organisms are sign-mediated interactions. Sign-mediated interactions are the precondition for every cooperation and coordination between at least two biological agents such as cells, tissues, organs and organisms. Signs of biocommunicative processes are chemical molecules in most cases. The signs that are used in a great variety of signaling processes follow syntactic (combinatorial), pragmatic (context-dependent) and semantic (content-specific) rules. These three levels of semiotic rules are helpful tools to investigate communication processes throughout all organismic kingdoms. It is not the aim to present the latest empirical data concerning communication in these three kingdoms but to present a unifying perspective that is able to interconnect transdisciplinary research on bacteria, fungi and plants.

摘要

本文描述了一种针对细菌、真菌和植物界的连贯生物通讯分类法。该研究进一步表明,除了在跨生物体、生物体间和生物体内通讯过程中使用生物信号外,一个共同特征是将非生物影响解释为产生适当适应性行为的指标。生物体内部和生物体之间的通讯过程远非机械相互作用,而是信号介导的相互作用。信号介导的相互作用是至少两个生物主体(如细胞、组织、器官和生物体)之间进行每一次合作与协调的前提条件。在大多数情况下,生物通讯过程的信号是化学分子。在各种各样的信号传导过程中使用的信号遵循句法(组合性)、语用(依赖上下文)和语义(特定内容)规则。这三个符号学规则层面是研究所有生物界通讯过程的有用工具。本文的目的不是呈现有关这三个界通讯的最新实证数据,而是呈现一种能够将关于细菌、真菌和植物的跨学科研究联系起来的统一观点。

相似文献

1
Uniform categorization of biocommunication in bacteria, fungi and plants.细菌、真菌和植物中生物通讯的统一分类
World J Biol Chem. 2010 May 26;1(5):160-80. doi: 10.4331/wjbc.v1.i5.160. Epub 2010 May 28.
2
Biocommunication and natural genome editing.生物通信与自然基因组编辑。
World J Biol Chem. 2010 Nov 26;1(11):348-52. doi: 10.4331/wjbc.v1.i11.348.
4
The biocommunication method: On the road to an integrative biology.生物通讯方法:迈向整合生物学之路
Commun Integr Biol. 2016 Apr 8;9(2):e1164374. doi: 10.1080/19420889.2016.1164374. eCollection 2016 Mar-Apr.
5
6
A revised six-kingdom system of life.一个修订后的六界生命系统。
Biol Rev Camb Philos Soc. 1998 Aug;73(3):203-66. doi: 10.1017/s0006323198005167.
7
Oxidized fatty acids as inter-kingdom signaling molecules.氧化脂肪酸作为跨领域信号分子。
Molecules. 2014 Jan 20;19(1):1273-85. doi: 10.3390/molecules19011273.

引用本文的文献

本文引用的文献

2
Symbiotic signaling: new functions for familiar proteins.共生信号传导:熟悉蛋白质的新功能
New Phytol. 2004 Feb;161(2):324-326. doi: 10.1111/j.1469-8137.2004.00991.x.
3
Coevolution of roots and mycorrhizas of land plants.陆地植物根系与菌根的协同进化。
New Phytol. 2002 May;154(2):275-304. doi: 10.1046/j.1469-8137.2002.00397.x.
4
Selection pressures on stomatal evolution.气孔进化的选择压力。
New Phytol. 2002 Mar;153(3):371-386. doi: 10.1046/j.0028-646X.2001.00334.x. Epub 2002 Mar 5.
6
Biocommunication and natural genome editing.生物通信与自然基因组编辑。
World J Biol Chem. 2010 Nov 26;1(11):348-52. doi: 10.4331/wjbc.v1.i11.348.
9
Learning from bacteria about natural information processing.从细菌中学习自然信息处理。
Ann N Y Acad Sci. 2009 Oct;1178:78-90. doi: 10.1111/j.1749-6632.2009.05022.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验