Suppr超能文献

一种多网络学习方法,用于捕获系统范围内特定于条件的反应。

A multiple network learning approach to capture system-wide condition-specific responses.

机构信息

Department of Computer Science, University of New Mexico, Albuquerque, NM 87131, USA.

出版信息

Bioinformatics. 2011 Jul 1;27(13):1832-8. doi: 10.1093/bioinformatics/btr270. Epub 2011 May 5.

Abstract

MOTIVATION

Condition-specific networks capture system-wide behavior under varying conditions such as environmental stresses, cell types or tissues. These networks frequently comprise parts that are unique to each condition, and parts that are shared among related conditions. Existing approaches for learning condition-specific networks typically identify either only differences or only similarities across conditions. Most of these approaches first learn networks per condition independently, and then identify similarities and differences in a post-learning step. Such approaches do not exploit the shared information across conditions during network learning.

RESULTS

We describe an approach for learning condition-specific networks that identifies the shared and unique subgraphs during network learning simultaneously, rather than as a post-processing step. Our approach learns networks across condition sets, shares data from different conditions and produces high-quality networks that capture biologically meaningful information. On simulated data, our approach outperformed an existing approach that learns networks independently for each condition, especially for small training datasets. On microarray data of hundreds of deletion mutants in two, yeast stationary-phase cell populations, the inferred network structure identified several common and population-specific effects of these deletion mutants and several high-confidence cases of double-deletion pairs, which can be experimentally tested. Our results are consistent with and extend the existing knowledge base of differentiated cell populations in yeast stationary phase.

AVAILABILITY AND IMPLEMENTATION

C++ code can be accessed from http://www.broadinstitute.org/~sroy/condspec/ .

摘要

动机

条件特定网络在不同条件下(如环境压力、细胞类型或组织)捕获系统范围的行为。这些网络通常包含特定于每个条件的部分,以及在相关条件之间共享的部分。学习条件特定网络的现有方法通常仅识别条件之间的差异或相似性。这些方法中的大多数首先独立地学习每个条件的网络,然后在学习后的步骤中识别相似性和差异。这些方法在网络学习过程中没有利用条件之间的共享信息。

结果

我们描述了一种学习条件特定网络的方法,该方法在网络学习过程中同时识别共享和独特的子图,而不是作为后处理步骤。我们的方法跨条件集学习网络,共享来自不同条件的数据,并生成捕获生物学有意义信息的高质量网络。在模拟数据上,我们的方法优于为每个条件独立学习网络的现有方法,尤其是对于小的训练数据集。在酵母静止期两个细胞群体的数百个缺失突变体的微阵列数据上,推断出的网络结构确定了这些缺失突变体的几个共同和群体特异性效应,以及几个可以进行实验测试的高可信度双缺失对情况。我们的结果与酵母静止期分化细胞群体的现有知识库一致,并进行了扩展。

可用性和实现

C++ 代码可从 http://www.broadinstitute.org/~sroy/condspec/ 访问。

相似文献

2
Scalable learning of large networks.大规模网络的可扩展学习。
IET Syst Biol. 2009 Sep;3(5):404-13. doi: 10.1049/iet-syb.2008.0161.
3
Systematic identification of statistically significant network measures.对具有统计学意义的网络指标进行系统识别。
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jan;71(1 Pt 2):016110. doi: 10.1103/PhysRevE.71.016110. Epub 2005 Jan 10.
4
A hybrid Bayesian network learning method for constructing gene networks.一种用于构建基因网络的混合贝叶斯网络学习方法。
Comput Biol Chem. 2007 Oct;31(5-6):361-72. doi: 10.1016/j.compbiolchem.2007.08.005. Epub 2007 Aug 19.
5
Topology of functional networks predicts physical binding of proteins.功能网络的拓扑结构预测蛋白质的物理结合。
Bioinformatics. 2012 Aug 15;28(16):2137-45. doi: 10.1093/bioinformatics/bts351. Epub 2012 Jun 19.

引用本文的文献

本文引用的文献

5
The DNA-encoded nucleosome organization of a eukaryotic genome.真核生物基因组的DNA编码核小体组织
Nature. 2009 Mar 19;458(7236):362-6. doi: 10.1038/nature07667. Epub 2008 Dec 17.
6
MMG: a probabilistic tool to identify submodules of metabolic pathways.MMG:一种用于识别代谢途径子模块的概率工具。
Bioinformatics. 2008 Apr 15;24(8):1078-84. doi: 10.1093/bioinformatics/btn066. Epub 2008 Feb 21.
8
Network-based classification of breast cancer metastasis.基于网络的乳腺癌转移分类
Mol Syst Biol. 2007;3:140. doi: 10.1038/msb4100180. Epub 2007 Oct 16.
10
Context-sensitive data integration and prediction of biological networks.生物网络的上下文敏感数据整合与预测
Bioinformatics. 2007 Sep 1;23(17):2322-30. doi: 10.1093/bioinformatics/btm332. Epub 2007 Jun 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验