Howard Marc W, Shankar Karthik H, Jagadisan Udaya K K
Syracuse University.
Top Cogn Sci. 2011 Jan;3(1):48-73. doi: 10.1111/j.1756-8765.2010.01112.x.
Computational models of semantic memory exploit information about cooccurrences of words in naturally-occurring text to extract information about the meaning of the words that are present in the language. Such models implicitly specify a representation of temporal context. Depending on the model, words are said to have occurred in the same context if they are presented within a moving window, within the same sentence or within the same document. The temporal context model (TCM), a specific quantitative specification of temporal context has proved useful in the study of episodic memory. The predictive temporal context model (pTCM) uses the same definition of temporal context to generate semantic memory representations. Taken together pTCM and TCM may prove to be part of a general model of declarative memory.
语义记忆的计算模型利用自然文本中单词共现的信息,来提取语言中单词含义的信息。这类模型隐含地指定了一种时间上下文的表征。根据模型的不同,如果单词出现在移动窗口内、同一句子中或同一文档内,就被认为是出现在相同的上下文中。时间上下文模型(TCM),一种对时间上下文的特定定量规范,已被证明在情景记忆研究中很有用。预测性时间上下文模型(pTCM)使用相同的时间上下文定义来生成语义记忆表征。综合来看,pTCM和TCM可能会被证明是陈述性记忆通用模型的一部分。