Center for Musculoskeletal Surgery, Charité-Universitaetsmedizin Berlin, Berlin, Germany.
Knee Surg Sports Traumatol Arthrosc. 2011 Dec;19(12):2090-7. doi: 10.1007/s00167-011-1517-x. Epub 2011 May 10.
Biomechanical comparison of four different Speed-Bridge configurations with or without medial or lateral row reinforcement. Reinforcement of the knotless Speed-Bridge double-row repair technique with additional medial mattress- or lateral single-stitches was hypothesized to improve biomechanical repair stability at time zero.
Controlled laboratory study: In 36 porcine fresh-frozen shoulders, the infraspinatus tendons were dissected and shoulders were randomized to four groups: (1) Speed-Bridge technique with single tendon perforation per anchor (STP); (2) Speed-Bridge technique with double tendon perforation per anchor (DTP); (3) Speed-Bridge technique with medial mattress-stitch reinforcement (MMS); (4) Speed-Bridge technique with lateral single-stitch reinforcement (LSS). All repairs were cyclically loaded from 10-60 N up to 10-200 N (20 N stepwise increase) using a material testing device. Forces at 3 and 5 mm gap formation, mode of failure and maximum load to failure were recorded.
The MMS-technique with double tendon perforation showed significantly higher ultimate tensile strength (338.9 ± 90.0 N) than DTP (228.3 ± 99.9 N), LSS (188.9 ± 62.5 N) and STP-technique (122.2 ± 33.8 N). Furthermore, the MMS-technique provided increased maximal force resistance until 3 and 5 mm gap formation (3 mm: 77.8 ± 18.6 N; 5 mm: 113.3 ± 36.1 N) compared with LSS, DTP and STP (P < 0.05 for each 3 and 5 mm gap formation). Failure mode was medial row defect by tendon sawing first, then laterally. No anchor pullout occurred.
Double tendon perforation per anchor and additional medial mattress stitches significantly enhance biomechanical construct stability at time zero in this ex vivo model when compared with the all-knotless Speed-Bridge rotator cuff repair.
比较了四种不同 Speed-Bridge 配置(带或不带内侧或外侧排加强)的生物力学。假设无结 Speed-Bridge 双排修复技术中额外的内侧褥式或外侧单针加强可以提高零时间的生物力学修复稳定性。
对照实验室研究:在 36 个猪新鲜冷冻肩部中,切开冈下肌腱,并将肩部随机分为四组:(1) 每个锚具单肌腱穿孔的 Speed-Bridge 技术 (STP);(2) 每个锚具双肌腱穿孔的 Speed-Bridge 技术 (DTP);(3) 内侧褥式加强的 Speed-Bridge 技术 (MMS);(4) 外侧单针加强的 Speed-Bridge 技术 (LSS)。所有修复均使用材料测试装置从 10-60 N 循环加载至 10-200 N(20 N 逐步增加)。记录 3 和 5mm 间隙形成时的力、失效模式和最大失效负荷。
双肌腱穿孔的 MMS 技术的最终拉伸强度(338.9 ± 90.0 N)明显高于 DTP(228.3 ± 99.9 N)、LSS(188.9 ± 62.5 N)和 STP 技术(122.2 ± 33.8 N)。此外,MMS 技术在 3 和 5mm 间隙形成时提供了更高的最大力阻力(3mm:77.8 ± 18.6 N;5mm:113.3 ± 36.1 N),与 LSS、DTP 和 STP 相比(每种 3 和 5mm 间隙形成时 P < 0.05)。失效模式为首先是冈下肌腱切割导致内侧排缺陷,然后是外侧排。没有发生锚钉拔出。
与全无结 Speed-Bridge 肩袖修复相比,在这个离体模型中,每个锚具双肌腱穿孔和额外的内侧褥式缝线显著提高了零时间的生物力学结构稳定性。