Department of Physiology and Biophysics and Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida 33136, USA.
J Neurosci. 2011 May 11;31(19):7060-72. doi: 10.1523/JNEUROSCI.0392-11.2011.
Presynaptic short-term plasticity (STP) dynamically modulates synaptic strength in a reversible manner on a timescale of milliseconds to minutes. For low basal vesicular release probability (prob0), four components of enhancement, F1 and F2 facilitation, augmentation (A), and potentiation (P), increase synaptic strength during repetitive nerve activity. For release rates that exceed the rate of replenishment of the readily releasable pool (RRP) of synaptic vesicles, depression of synaptic strength, observed as a rundown of postsynaptic potential amplitudes, can also develop. To understand the relationship between enhancement and depression at the frog (Rana pipiens) neuromuscular synapse, data obtained over a wide range of prob0 using patterned stimulation are analyzed with a hybrid model to reveal the components of STP. We find that F1, F2, A, P, and depletion of the RRP all contribute to STP during repetitive nerve activity at low prob0. As prob0 is increased by raising Ca(o)(2+) (extracellular Ca2+), specific components of enhancement no longer contribute, with first P, then A, and then F2 becoming undetectable, even though F1 continues to enhance release. For levels of prob0 that lead to appreciable depression, only F1 and depletion of the RRP contribute to STP during rundown, and for low stimulation rates, F2 can also contribute. These observations place prob0-dependent limitations on which components of enhancement contribute to STP and suggest some fundamental mechanistic differences among the components. The presented model can serve as a tool to readily characterize the components of STP over wide ranges of prob0.
突触前短期可塑性(STP)以毫秒到分钟的时间尺度动态调节突触强度,这种调节是可逆的。在基础囊泡释放概率(prob0)较低的情况下,增强的四个成分(F1 和 F2 易化、增强(A)和增强(P))在重复神经活动期间增加突触强度。对于释放速率超过突触囊泡易释放池(RRP)补充速率的情况,突触强度也会出现抑制,表现为突触后电位幅度的衰减。为了了解在青蛙(Rana pipiens)神经肌肉突触中增强和抑制之间的关系,我们使用模式化刺激在广泛的 prob0 范围内获得数据,并使用混合模型进行分析,以揭示 STP 的成分。我们发现,在低 prob0 时,F1、F2、A、P 和 RRP 的耗竭都会导致重复神经活动期间的 STP。随着 Ca(o)(2+)(细胞外 Ca2+)的增加,增强的特定成分不再起作用,首先是 P,然后是 A,然后是 F2 变得无法检测,尽管 F1 仍在增强释放。对于导致明显抑制的 prob0 水平,只有 F1 和 RRP 的耗竭会在衰减期间导致 STP,并且对于低刺激率,F2 也可以贡献。这些观察结果表明,prob0 依赖性限制了增强的哪些成分有助于 STP,并表明这些成分之间存在一些基本的机制差异。所提出的模型可以作为一种工具,在广泛的 prob0 范围内快速表征 STP 的成分。