Suppr超能文献

系统生物学超越网络:通过自组织从无序中产生秩序。

Systems biology beyond networks: generating order from disorder through self-organization.

机构信息

School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, United Kingdom.

出版信息

Semin Cancer Biol. 2011 Jun;21(3):165-74. doi: 10.1016/j.semcancer.2011.04.004. Epub 2011 May 6.

Abstract

Erwin Schrödinger pointed out in his 1944 book "What is Life" that one defining attribute of biological systems seems to be their tendency to generate order from disorder defying the second law of thermodynamics. Almost parallel to his findings, the science of complex systems was founded based on observations on physical and chemical systems showing that inanimate matter can exhibit complex structures although their interacting parts follow simple rules. This is explained by a process known as self-organization and it is now widely accepted that multi-cellular biological organisms are themselves self-organizing complex systems in which the relations among their parts are dynamic, contextual and interdependent. In order to fully understand such systems, we are required to computationally and mathematically model their interactions as promulgated in systems biology. The preponderance of network models in the practice of systems biology inspired by a reductionist, bottom-up view, seems to neglect, however, the importance of bidirectional interactions across spatial scales and domains. This approach introduces a shortcoming that may hinder research on emergent phenomena such as those of tissue morphogenesis and related diseases, such as cancer. Another hindrance of current modeling attempts is that those systems operate in a parameter space that seems far removed from biological reality. This misperception calls for more tightly coupled mathematical and computational models to biological experiments by creating and designing biological model systems that are accessible to a wide range of experimental manipulations. In this way, a comprehensive understanding of fundamental processes in normal development or of aberrations, like cancer, will be generated.

摘要

埃尔温·薛定谔(Erwin Schrödinger)在他 1944 年的著作《生命是什么》中指出,生物系统的一个定义属性似乎是它们从无序中产生有序的倾向,这违背了热力学第二定律。几乎与他的发现同时,复杂系统科学也基于对物理和化学系统的观察而建立,这些观察表明,无生命物质虽然其相互作用的部分遵循简单的规则,但可以表现出复杂的结构。这一现象可以通过自组织过程来解释,现在广泛认为多细胞生物本身就是自组织的复杂系统,其各部分之间的关系是动态的、上下文相关的和相互依存的。为了充分理解这些系统,我们需要在系统生物学中对其相互作用进行计算和数学建模。网络模型在系统生物学实践中的优势,源于一种还原论的、自下而上的观点,但这种观点似乎忽视了跨越空间尺度和领域的双向相互作用的重要性。这种方法引入了一个缺点,可能会阻碍对组织形态发生等新兴现象的研究,以及相关疾病,如癌症的研究。当前建模尝试的另一个障碍是,这些系统在一个似乎远离生物学现实的参数空间中运行。这种误解需要通过创建和设计可广泛进行实验操作的生物模型系统,更紧密地将数学和计算模型与生物实验联系起来。通过这种方式,将生成对正常发育过程或异常情况(如癌症)的基本过程的全面理解。

相似文献

1
Systems biology beyond networks: generating order from disorder through self-organization.
Semin Cancer Biol. 2011 Jun;21(3):165-74. doi: 10.1016/j.semcancer.2011.04.004. Epub 2011 May 6.
2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
3
Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
J Phys Condens Matter. 2008 Feb 13;20(6):060301. doi: 10.1088/0953-8984/20/06/060301. Epub 2008 Jan 24.
4
Theoretical aspects of Systems Biology.
Prog Biophys Mol Biol. 2013 May;112(1-2):33-43. doi: 10.1016/j.pbiomolbio.2013.03.019. Epub 2013 Apr 3.
5
Biology meets physics: Reductionism and multi-scale modeling of morphogenesis.
Stud Hist Philos Biol Biomed Sci. 2017 Feb;61:20-34. doi: 10.1016/j.shpsc.2016.12.003. Epub 2016 Dec 23.
7
Historical and conceptual background of self-organization by reactive processes.
Biol Cell. 2006 Oct;98(10):589-602. doi: 10.1042/BC20050086.
8
Computational Systems Biology of Morphogenesis.
Methods Mol Biol. 2022;2399:343-365. doi: 10.1007/978-1-0716-1831-8_14.
10
Computational systems biology and dose-response modeling in relation to new directions in toxicity testing.
J Toxicol Environ Health B Crit Rev. 2010 Feb;13(2-4):253-76. doi: 10.1080/10937404.2010.483943.

引用本文的文献

1
The "Culture" of Organs: A Holistic Theory on the Origins of the Cancer Tissue Environment.
Life (Basel). 2024 Dec 7;14(12):1622. doi: 10.3390/life14121622.
3
Assessing complexity and dynamics in epidemics: geographical barriers and facilitators of foot-and-mouth disease dissemination.
Front Vet Sci. 2023 May 12;10:1149460. doi: 10.3389/fvets.2023.1149460. eCollection 2023.
4
Is Cancer Reversible? Rethinking Carcinogenesis Models-A New Epistemological Tool.
Biomolecules. 2023 Apr 24;13(5):733. doi: 10.3390/biom13050733.
5
Biologically grounded scientific methods: The challenges ahead for combating epidemics.
Methods. 2021 Nov;195:113-119. doi: 10.1016/j.ymeth.2021.09.001. Epub 2021 Sep 4.
6
Assessing the Dynamics and Complexity of Disease Pathogenicity Using 4-Dimensional Immunological Data.
Front Immunol. 2019 Jun 12;10:1258. doi: 10.3389/fimmu.2019.01258. eCollection 2019.
7
Electromagnetic Fields, Genomic Instability and Cancer: A Systems Biological View.
Genes (Basel). 2019 Jun 25;10(6):479. doi: 10.3390/genes10060479.
8
Modeling Cell Reactions to Ionizing Radiation: From a Lesion to a Cancer.
Dose Response. 2019 Apr 7;17(2):1559325819838434. doi: 10.1177/1559325819838434. eCollection 2019 Apr-Jun.
9
Systems Medicine Disease: Disease Classification and Scalability Beyond Networks and Boundary Conditions.
Front Bioeng Biotechnol. 2018 Aug 7;6:112. doi: 10.3389/fbioe.2018.00112. eCollection 2018.
10
Origin of Cancer: An Information, Energy, and Matter Disease.
Front Cell Dev Biol. 2016 Nov 17;4:121. doi: 10.3389/fcell.2016.00121. eCollection 2016.

本文引用的文献

1
Research on early-stage carcinogenesis: are we approaching paradigm instability?
J Clin Oncol. 2010 Jul 10;28(20):3215-8. doi: 10.1200/JCO.2010.28.5460. Epub 2010 Jun 14.
2
Environmental causes of cancer: endocrine disruptors as carcinogens.
Nat Rev Endocrinol. 2010 Jul;6(7):363-70. doi: 10.1038/nrendo.2010.87. Epub 2010 May 25.
3
A single-cell approach in modeling the dynamics of tumor microregions.
Math Biosci Eng. 2005 Jul;2(3):643-55. doi: 10.3934/mbe.2005.2.643.
4
Dissecting cancer through mathematics: from the cell to the animal model.
Nat Rev Cancer. 2010 Mar;10(3):221-30. doi: 10.1038/nrc2808.
5
The role of collagen reorganization on mammary epithelial morphogenesis in a 3D culture model.
Biomaterials. 2010 May;31(13):3622-30. doi: 10.1016/j.biomaterials.2010.01.077. Epub 2010 Feb 9.
7
The Cardiac Physiome: perspectives for the future.
Exp Physiol. 2009 May;94(5):597-605. doi: 10.1113/expphysiol.2008.044099. Epub 2008 Dec 19.
8
In silico cancer modeling: is it ready for prime time?
Nat Clin Pract Oncol. 2009 Jan;6(1):34-42. doi: 10.1038/ncponc1237. Epub 2008 Oct 14.
9
Microenvironment driven invasion: a multiscale multimodel investigation.
J Math Biol. 2009 Apr;58(4-5):579-624. doi: 10.1007/s00285-008-0210-2. Epub 2008 Oct 7.
10
Multiscale agent-based cancer modeling.
J Math Biol. 2009 Apr;58(4-5):545-59. doi: 10.1007/s00285-008-0211-1. Epub 2008 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验