College of Dental Sciences, Department of Cariology, Endodontology & Pedodontology, Radboud University Nijmegen Medical Centre, The Netherlands.
Dent Mater. 2011 Jul;27(7):701-9. doi: 10.1016/j.dental.2011.03.013. Epub 2011 May 14.
The aim of this study was to investigate the effectiveness of a variety of techniques to bond new composite to artificially aged composite of different compositions.
Composite resin blocks were made of five different commercially available composites (n=30) (Clearfil AP-X, Clearfil PhotoPosterior, Photo Clearfil Bright, Filtek Supreme XT and HelioMolar). After aging the composite blocks (thermo-cycling 5000×), blocks were subjected to one of 9 repair procedures: no treatment (control), diamond bur, sandblasting alumina particles, CoJet™, phosphoric acid, 3% hydrofluoric acid 20s or 120s, 9.6% hydrofluoric acid 20s or 120s. In addition, the cohesive strength of the tested composites was measured. Two-phase sandwiches ('repaired composite') were prepared using each of the 9 repair protocols, successively followed by silane and adhesive (OptiBond FL) treatment, prior to the application of the same composite. Specimens were subjected to micro-tensile bond strength testing. Data were analyzed using ANOVA and Tukey's HSD (p<0.05).
For all composites the lowest bond strength was obtained when no specific repair protocol (control) was applied; the highest for the cohesive strength. Compared to the control for the microhybrid composite (Clearfil AP-X) five repair techniques resulted in a significantly higher repair strength (p<0.05), whereas for the nano-hybrid composite (Filtek Supreme XT) and hybrid composite containing quartz (Clearfil PhotoPosterior) only one repair technique significantly increased the bond strength (p<0.01).
None of the surface treatments can be recommended as a universally applicable repair technique for the different sorts of composites. To optimally repair composites, knowledge of the composition is helpful.
本研究旨在探讨各种技术将新的复合材料粘结到不同成分的人工老化复合材料上的有效性。
用五种不同的市售复合材料(Clearfil AP-X、Clearfil PhotoPosterior、Photo Clearfil Bright、Filtek Supreme XT 和 HelioMolar)制作复合材料树脂块。在老化复合材料块(热循环 5000 次)后,将块进行以下 9 种修复程序之一:不处理(对照)、金刚砂车针、氧化铝喷砂、CoJet™、磷酸、3%氢氟酸 20s 或 120s、9.6%氢氟酸 20s 或 120s。此外,还测量了测试复合材料的内聚强度。使用这 9 种修复方案中的每一种制备两相三明治(“修复复合材料”),然后依次进行硅烷和粘合剂(OptiBond FL)处理,然后再应用相同的复合材料。对标本进行微拉伸粘结强度测试。使用 ANOVA 和 Tukey 的 HSD(p<0.05)进行数据分析。
对于所有复合材料,不应用特定的修复方案(对照)时粘结强度最低,内聚强度最高。与对照相比,对于微混合复合材料(Clearfil AP-X),五种修复技术的修复强度显著更高(p<0.05),而对于纳米混合复合材料(Filtek Supreme XT)和含石英的混合复合材料(Clearfil PhotoPosterior),只有一种修复技术显著提高了粘结强度(p<0.01)。
没有一种表面处理方法可以被推荐为不同类型复合材料的通用修复技术。为了优化复合材料的修复,了解其成分是有帮助的。