Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development, University of California, Berkeley, CA, USA.
Mol Biol Evol. 2011 Oct;28(10):2961-71. doi: 10.1093/molbev/msr132. Epub 2011 May 13.
The origin of metazoans required the evolution of mechanisms for maintaining differentiated cell types within a multicellular individual, in part through spatially differentiated patterns of gene transcription. The unicellular ancestor of metazoans was presumably capable of regulating gene expression temporally in response to changing environmental conditions, and spatial cell differentiation in metazoans may represent a co-option of preexisting regulatory mechanisms. Myc is a critical regulator of cell growth, proliferation, and death that is found in all metazoans but absent in other multicellular lineages, including fungi and plants. Homologs of Myc and its binding partner, Max, exist in two of the closest living relatives of animals, the choanoflagellate Monosiga brevicollis (Mb) and Capsaspora owczarzaki, a unicellular opisthokont that is closely related to metazoans and choanoflagellates. We find that Myc and Max from M. brevicollis heterodimerize and bind to both canonical and noncanonical E-boxes, the DNA-binding sites through which metazoan Myc proteins act. Moreover, in M. brevicollis, MbMyc protein can be detected in nuclear and flagellar regions. Like metazoan Max proteins, MbMax can form homodimers that bind to E-boxes. However, cross-species dimerization between Mb and human Myc and Max proteins was not observed, suggesting that the binding interface has diverged. Our results reveal that the Myc/Max network arose before the divergence of the choanoflagellate and metazoan lineages. Furthermore, core features of metazoan Myc function, including heterodimerization with Max, binding to E-box sequences in DNA, and localization to the nucleus, predate the origin of metazoans.
后生动物的起源需要进化出在多细胞个体中维持分化细胞类型的机制,部分机制通过空间上分化的基因转录模式来实现。后生动物的单细胞祖先可能能够在时间上响应环境条件的变化来调节基因表达,而后生动物中的空间细胞分化可能代表了对预先存在的调控机制的一种选择利用。Myc 是一种关键的细胞生长、增殖和死亡的调节因子,存在于所有后生动物中,但在其他多细胞谱系中缺失,包括真菌和植物。Myc 的同源物及其结合伴侣 Max 存在于动物最接近的两个现存亲缘物种中,即领鞭毛原生动物 Monosiga brevicollis(Mb)和 Capsaspora owczarzaki,这是一种与后生动物和领鞭毛原生动物密切相关的单细胞后生动物。我们发现,来自 M. brevicollis 的 Myc 和 Max 可以形成异二聚体,并结合到经典和非经典的 E-box 上,这是后生动物 Myc 蛋白发挥作用的 DNA 结合位点。此外,在 M. brevicollis 中,可以在核和鞭毛区域检测到 MbMyc 蛋白。像后生动物的 Max 蛋白一样,MbMax 可以形成结合到 E-box 的同源二聚体。然而,没有观察到 Mb 和人类 Myc 和 Max 蛋白之间的跨物种二聚化,这表明结合界面已经发生了分歧。我们的结果表明,Myc/Max 网络在领鞭毛动物和后生动物谱系分化之前就已经出现了。此外,后生动物 Myc 功能的核心特征,包括与 Max 的异二聚化、与 DNA 中 E-box 序列的结合以及定位于细胞核,都早于后生动物的起源。