Suppr超能文献

Myc-Max 网络的前动物祖源。

Premetazoan ancestry of the Myc-Max network.

机构信息

Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development, University of California, Berkeley, CA, USA.

出版信息

Mol Biol Evol. 2011 Oct;28(10):2961-71. doi: 10.1093/molbev/msr132. Epub 2011 May 13.

Abstract

The origin of metazoans required the evolution of mechanisms for maintaining differentiated cell types within a multicellular individual, in part through spatially differentiated patterns of gene transcription. The unicellular ancestor of metazoans was presumably capable of regulating gene expression temporally in response to changing environmental conditions, and spatial cell differentiation in metazoans may represent a co-option of preexisting regulatory mechanisms. Myc is a critical regulator of cell growth, proliferation, and death that is found in all metazoans but absent in other multicellular lineages, including fungi and plants. Homologs of Myc and its binding partner, Max, exist in two of the closest living relatives of animals, the choanoflagellate Monosiga brevicollis (Mb) and Capsaspora owczarzaki, a unicellular opisthokont that is closely related to metazoans and choanoflagellates. We find that Myc and Max from M. brevicollis heterodimerize and bind to both canonical and noncanonical E-boxes, the DNA-binding sites through which metazoan Myc proteins act. Moreover, in M. brevicollis, MbMyc protein can be detected in nuclear and flagellar regions. Like metazoan Max proteins, MbMax can form homodimers that bind to E-boxes. However, cross-species dimerization between Mb and human Myc and Max proteins was not observed, suggesting that the binding interface has diverged. Our results reveal that the Myc/Max network arose before the divergence of the choanoflagellate and metazoan lineages. Furthermore, core features of metazoan Myc function, including heterodimerization with Max, binding to E-box sequences in DNA, and localization to the nucleus, predate the origin of metazoans.

摘要

后生动物的起源需要进化出在多细胞个体中维持分化细胞类型的机制,部分机制通过空间上分化的基因转录模式来实现。后生动物的单细胞祖先可能能够在时间上响应环境条件的变化来调节基因表达,而后生动物中的空间细胞分化可能代表了对预先存在的调控机制的一种选择利用。Myc 是一种关键的细胞生长、增殖和死亡的调节因子,存在于所有后生动物中,但在其他多细胞谱系中缺失,包括真菌和植物。Myc 的同源物及其结合伴侣 Max 存在于动物最接近的两个现存亲缘物种中,即领鞭毛原生动物 Monosiga brevicollis(Mb)和 Capsaspora owczarzaki,这是一种与后生动物和领鞭毛原生动物密切相关的单细胞后生动物。我们发现,来自 M. brevicollis 的 Myc 和 Max 可以形成异二聚体,并结合到经典和非经典的 E-box 上,这是后生动物 Myc 蛋白发挥作用的 DNA 结合位点。此外,在 M. brevicollis 中,可以在核和鞭毛区域检测到 MbMyc 蛋白。像后生动物的 Max 蛋白一样,MbMax 可以形成结合到 E-box 的同源二聚体。然而,没有观察到 Mb 和人类 Myc 和 Max 蛋白之间的跨物种二聚化,这表明结合界面已经发生了分歧。我们的结果表明,Myc/Max 网络在领鞭毛动物和后生动物谱系分化之前就已经出现了。此外,后生动物 Myc 功能的核心特征,包括与 Max 的异二聚化、与 DNA 中 E-box 序列的结合以及定位于细胞核,都早于后生动物的起源。

相似文献

1
Premetazoan ancestry of the Myc-Max network.Myc-Max 网络的前动物祖源。
Mol Biol Evol. 2011 Oct;28(10):2961-71. doi: 10.1093/molbev/msr132. Epub 2011 May 13.

引用本文的文献

4
Manipulating Myc for reparative regeneration.操控Myc以实现修复性再生。
Front Cell Dev Biol. 2024 Mar 21;12:1357589. doi: 10.3389/fcell.2024.1357589. eCollection 2024.
5
MYC-an emerging player in mitochondrial diseases.MYC——线粒体疾病中的一个新角色。
Front Cell Dev Biol. 2023 Sep 4;11:1257651. doi: 10.3389/fcell.2023.1257651. eCollection 2023.
7
Strategies to target the cancer driver MYC in tumor cells.在肿瘤细胞中靶向癌症驱动因子MYC的策略。
Front Oncol. 2023 Mar 8;13:1142111. doi: 10.3389/fonc.2023.1142111. eCollection 2023.

本文引用的文献

5
Myc's broad reach.Myc的广泛影响范围。
Genes Dev. 2008 Oct 15;22(20):2755-66. doi: 10.1101/gad.1712408.
9
A phylogenomic investigation into the origin of metazoa.后生动物起源的系统基因组学研究。
Mol Biol Evol. 2008 Apr;25(4):664-72. doi: 10.1093/molbev/msn006. Epub 2008 Jan 9.
10
Non-transcriptional control of DNA replication by c-Myc.c-Myc对DNA复制的非转录调控
Nature. 2007 Jul 26;448(7152):445-51. doi: 10.1038/nature05953. Epub 2007 Jun 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验