Suppr超能文献

使用近红外二区的碳纳米管荧光染料对小鼠进行深层组织解剖成像。

Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window.

机构信息

Department of Chemistry, Stanford University, 333 Campus Drive #121, Stanford, CA 94305, USA.

出版信息

Proc Natl Acad Sci U S A. 2011 May 31;108(22):8943-8. doi: 10.1073/pnas.1014501108. Epub 2011 May 16.

Abstract

Fluorescent imaging in the second near-infrared window (NIR II, 1-1.4 μm) holds much promise due to minimal autofluorescence and tissue scattering. Here, using well-functionalized biocompatible single-walled carbon nanotubes (SWNTs) as NIR II fluorescent imaging agents, we performed high-frame-rate video imaging of mice during intravenous injection of SWNTs and investigated the path of SWNTs through the mouse anatomy. We observed in real-time SWNT circulation through the lungs and kidneys several seconds postinjection, and spleen and liver at slightly later time points. Dynamic contrast-enhanced imaging through principal component analysis (PCA) was performed and found to greatly increase the anatomical resolution of organs as a function of time postinjection. Importantly, PCA was able to discriminate organs such as the pancreas, which could not be resolved from real-time raw images. Tissue phantom studies were performed to compare imaging in the NIR II region to the traditional NIR I biological transparency window (700-900 nm). Examination of the feature sizes of a common NIR I dye (indocyanine green) showed a more rapid loss of feature contrast and integrity with increasing feature depth as compared to SWNTs in the NIR II region. The effects of increased scattering in the NIR I versus NIR II region were confirmed by Monte Carlo simulation. In vivo fluorescence imaging in the NIR II region combined with PCA analysis may represent a powerful approach to high-resolution optical imaging through deep tissues, useful for a wide range of applications from biomedical research to disease diagnostics.

摘要

近红外二区(NIR II,1-1.4μm)荧光成像是一种很有前途的方法,因为它的自发荧光和组织散射最小。在这里,我们使用功能化良好的生物相容性单壁碳纳米管(SWNTs)作为 NIR II 荧光成像剂,在静脉注射 SWNTs 后对小鼠进行了高帧率视频成像,并研究了 SWNTs 通过小鼠解剖结构的路径。我们实时观察到 SWNT 在注射后几秒钟内通过肺部和肾脏循环,稍晚时间点则通过脾脏和肝脏。通过主成分分析(PCA)进行动态对比增强成像,发现它大大提高了作为注射后时间函数的器官的解剖分辨率。重要的是,PCA 能够区分胰腺等器官,这些器官在实时原始图像中无法分辨。还进行了组织体模研究,以比较 NIR II 区域与传统 NIR I 生物透明窗口(700-900nm)的成像。对常见 NIR I 染料(吲哚菁绿)的特征尺寸的检查表明,与 NIR II 区域中的 SWNTs 相比,特征对比度和完整性随着特征深度的增加而更快地丧失。蒙特卡罗模拟证实了 NIR I 与 NIR II 区域中散射增加的影响。NIR II 区域的体内荧光成像与 PCA 分析相结合,可能代表了一种通过深层组织进行高分辨率光学成像的强大方法,可广泛应用于从生物医学研究到疾病诊断的各种应用。

相似文献

3
Recent Progress in Fluorescence Imaging of the Near-Infrared II Window.近红外二区荧光成像的最新进展。
Chembiochem. 2018 Dec 18;19(24):2522-2541. doi: 10.1002/cbic.201800466. Epub 2018 Nov 9.
5
Carbon nanotubes for biomedical imaging: the recent advances.用于生物医学成像的碳纳米管:最新进展。
Adv Drug Deliv Rev. 2013 Dec;65(15):1951-63. doi: 10.1016/j.addr.2013.10.002. Epub 2013 Oct 30.
7
Deep learning for in vivo near-infrared imaging.用于体内近红外成像的深度学习
Proc Natl Acad Sci U S A. 2021 Jan 5;118(1). doi: 10.1073/pnas.2021446118.
8
Fluorescence Imaging In Vivo at Wavelengths beyond 1500 nm.活体中波长超过 1500nm 的荧光成像。
Angew Chem Int Ed Engl. 2015 Dec 1;54(49):14758-62. doi: 10.1002/anie.201507473. Epub 2015 Oct 13.
9
Tissue-Specific Near-Infrared Fluorescence Imaging.组织特异性近红外荧光成像。
Acc Chem Res. 2016 Sep 20;49(9):1731-40. doi: 10.1021/acs.accounts.6b00239. Epub 2016 Aug 26.

引用本文的文献

4
Carbon nanotubes in biomedical applications: current status, promises, and challenges.生物医学应用中的碳纳米管:现状、前景与挑战。
Carbon Lett (Korean Carbon Soc). 2022;32(5):1207-1226. doi: 10.1007/s42823-022-00364-4. Epub 2022 Jul 4.

本文引用的文献

3
NIR dyes for bioimaging applications.用于生物成像应用的近红外染料。
Curr Opin Chem Biol. 2010 Feb;14(1):64-70. doi: 10.1016/j.cbpa.2009.10.022. Epub 2009 Nov 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验