Suppr超能文献

基于因果关系的属性泛化。

Causal-based property generalization.

机构信息

Department of Psychology, New York University.

出版信息

Cogn Sci. 2009 May;33(3):301-44. doi: 10.1111/j.1551-6709.2009.01015.x.

Abstract

A central question in cognitive research concerns how new properties are generalized to categories. This article introduces a model of how generalizations involve a process of causal inference in which people estimate the likely presence of the new property in individual category exemplars and then the prevalence of the property among all category members. Evidence in favor of this causal-based generalization (CBG) view included effects of an existing feature's base rate (Experiment 1), the direction of the causal relations (Experiments 2 and 4), the number of those relations (Experiment 3), and the distribution of features among category members (Experiments 4 and 5). The results provided no support for an alternative view that generalizations are promoted by the centrality of the to-be-generalized feature. However, there was evidence that a minority of participants based their judgments on simpler associative reasoning processes.

摘要

认知研究的一个核心问题是新属性如何被泛化到类别中。本文介绍了一种模型,说明泛化涉及因果推理过程,人们在这个过程中估计新属性在个体类别实例中的可能存在性,然后估计属性在所有类别成员中的普遍性。支持这种基于因果关系的泛化(CBG)观点的证据包括现有特征基础率的影响(实验 1)、因果关系的方向(实验 2 和 4)、这些关系的数量(实验 3)以及特征在类别成员中的分布(实验 4 和 5)。结果不支持另一种观点,即泛化是由待泛化特征的中心性所促进的。然而,有证据表明,少数参与者的判断是基于更简单的联想推理过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验