Suppr超能文献

光照会引起视交叉上核中视网膜接受神经元的兴奋短时间和长期变化。

Light exposure induces short- and long-term changes in the excitability of retinorecipient neurons in suprachiasmatic nucleus.

机构信息

Department of Psychology, Barnard College, New York, NY, USA.

出版信息

J Neurophysiol. 2011 Aug;106(2):576-88. doi: 10.1152/jn.00060.2011. Epub 2011 May 18.

Abstract

The suprachiasmatic nucleus (SCN) is the locus of a hypothalamic circadian clock that synchronizes physiological and behavioral responses to the daily light-dark cycle. The nucleus is composed of functionally and peptidergically diverse populations of cells for which distinct electrochemical properties are largely unstudied. SCN neurons containing gastrin-releasing peptide (GRP) receive direct retinal input via the retinohypothalamic tract. We targeted GRP neurons with a green fluorescent protein (GFP) marker for whole cell patch-clamping. In these neurons, we studied short (0.5-1.5 h)- and long-term (2-6 h) effects of a 1-h light pulse (LP) given 2 h after lights off [Zeitgeber time (ZT) 14:00-15:00] on membrane potential and spike firing. In brain slices taken from light-exposed animals, cells were depolarized, and spike firing rate increased between ZT 15:30 and 16:30. During a subsequent 4-h period beginning around ZT 17:00, GRP neurons from light-exposed animals were hyperpolarized by ∼15 mV. None of these effects was observed in GRP neurons from animals not exposed to light or in immediately adjacent non-GRP neurons whether or not exposed to light. Depolarization of GRP neurons was associated with a reduction in GABA(A)-dependent synaptic noise, whereas hyperpolarization was accompanied both by a loss of GABA(A) drive and suppression of a TTX-resistant leakage current carried primarily by Na. This suggests that, in the SCN, exposure to light may induce a short-term increase in GRP neuron excitability mediated by retinal neurotransmitters and neuropeptides, followed by long-term membrane hyperpolarization resulting from suppression of a leakage current, possibly resulting from genomic signals.

摘要

视交叉上核(SCN)是下丘脑昼夜节律钟的所在地,它使生理和行为反应与每日的光-暗周期同步。该核由功能和肽类多样化的细胞群体组成,其独特的电化学特性在很大程度上尚未得到研究。含有胃泌素释放肽(GRP)的 SCN 神经元通过视网膜下丘脑束接收直接的视网膜输入。我们使用绿色荧光蛋白(GFP)标记物靶向 GRP 神经元进行全细胞膜片钳记录。在这些神经元中,我们研究了在光照后 2 小时(ZT 14:00-15:00)给予 1 小时光脉冲(LP)对膜电位和尖峰放电的短期(0.5-1.5 小时)和长期(2-6 小时)影响。在取自光照动物的脑片中,细胞去极化,并且在 ZT 15:30 和 16:30 之间尖峰放电率增加。在大约从 ZT 17:00 开始的随后 4 小时期间,来自光照动物的 GRP 神经元被超极化约 15 mV。在没有暴露于光的动物的 GRP 神经元或无论是否暴露于光的紧邻非 GRP 神经元中均未观察到这些效应。GRP 神经元的去极化与 GABA(A)依赖性突触噪声的减少有关,而超极化伴随着 GABA(A)驱动的丧失和主要由 Na 携带的 TTX 抗性泄漏电流的抑制。这表明,在 SCN 中,暴露于光可能会通过视网膜神经递质和神经肽介导的短期增加 GRP 神经元兴奋性,随后由于抑制泄漏电流而导致长期膜超极化,这可能是由于基因组信号引起的。

相似文献

1
Light exposure induces short- and long-term changes in the excitability of retinorecipient neurons in suprachiasmatic nucleus.
J Neurophysiol. 2011 Aug;106(2):576-88. doi: 10.1152/jn.00060.2011. Epub 2011 May 18.
4
6
Selective Distribution of Retinal Input to Mouse SCN Revealed in Analysis of Sagittal Sections.
J Biol Rhythms. 2015 Jun;30(3):251-7. doi: 10.1177/0748730415584058.
7
Glycogen synthase kinase 3 regulates photic signaling in the suprachiasmatic nucleus.
Eur J Neurosci. 2017 Apr;45(8):1102-1110. doi: 10.1111/ejn.13549. Epub 2017 Mar 21.
8
Delayed Cryptochrome Degradation Asymmetrically Alters the Daily Rhythm in Suprachiasmatic Clock Neuron Excitability.
J Neurosci. 2017 Aug 16;37(33):7824-7836. doi: 10.1523/JNEUROSCI.0691-17.2017. Epub 2017 Jul 11.
9
Phase delays to light and gastrin-releasing peptide require the protein kinase A pathway.
Neurosci Lett. 2014 Jan 24;559:24-9. doi: 10.1016/j.neulet.2013.11.031. Epub 2013 Nov 25.
10
Retinohypothalamic tract synapses in the rat suprachiasmatic nucleus demonstrate short-term synaptic plasticity.
J Neurophysiol. 2010 May;103(5):2390-9. doi: 10.1152/jn.00695.2009. Epub 2010 Mar 10.

引用本文的文献

1
Measuring Absolute Membrane Potential Across Space and Time.
Annu Rev Biophys. 2021 May 6;50:447-468. doi: 10.1146/annurev-biophys-062920-063555. Epub 2021 Mar 2.
2
A sodium background conductance controls the spiking pattern of mouse adrenal chromaffin cells in situ.
J Physiol. 2021 Mar;599(6):1855-1883. doi: 10.1113/JP281044. Epub 2021 Jan 29.
3
Circadian Regulation of GluA2 mRNA Processing in the Rat Suprachiasmatic Nucleus and Other Brain Structures.
Mol Neurobiol. 2021 Jan;58(1):439-449. doi: 10.1007/s12035-020-02141-8. Epub 2020 Sep 22.
4
Circuit development in the master clock network of mammals.
Eur J Neurosci. 2020 Jan;51(1):82-108. doi: 10.1111/ejn.14259. Epub 2018 Dec 5.
5
Functional Significance of the Excitatory Effects of GABA in the Suprachiasmatic Nucleus.
J Biol Rhythms. 2018 Aug;33(4):376-387. doi: 10.1177/0748730418782820. Epub 2018 Jul 5.
6
The dynamics of GABA signaling: Revelations from the circadian pacemaker in the suprachiasmatic nucleus.
Front Neuroendocrinol. 2017 Jan;44:35-82. doi: 10.1016/j.yfrne.2016.11.003. Epub 2016 Nov 25.
7
Collective timekeeping among cells of the master circadian clock.
J Endocrinol. 2016 Jul;230(1):R27-49. doi: 10.1530/JOE-16-0054. Epub 2016 May 6.
8
Role of vasoactive intestinal peptide in the light input to the circadian system.
Eur J Neurosci. 2015 Jul;42(2):1839-48. doi: 10.1111/ejn.12919. Epub 2015 May 25.
10
Site-specific effects of gastrin-releasing peptide in the suprachiasmatic nucleus.
Eur J Neurosci. 2014 Feb;39(4):630-9. doi: 10.1111/ejn.12411. Epub 2013 Oct 28.

本文引用的文献

1
Daily and seasonal adaptation of the circadian clock requires plasticity of the SCN neuronal network.
Eur J Neurosci. 2010 Dec;32(12):2143-51. doi: 10.1111/j.1460-9568.2010.07522.x.
2
Specializations of gastrin-releasing peptide cells of the mouse suprachiasmatic nucleus.
J Comp Neurol. 2010 Apr 15;518(8):1249-63. doi: 10.1002/cne.22272.
3
Metabotropic glutamate receptor-dependent long-term potentiation.
Neuropharmacology. 2009 Mar;56(4):735-40. doi: 10.1016/j.neuropharm.2009.01.002.
4
Peptide neurotransmitters activate a cation channel complex of NALCN and UNC-80.
Nature. 2009 Feb 5;457(7230):741-4. doi: 10.1038/nature07579. Epub 2008 Dec 17.
5
Excitatory actions of GABA in the suprachiasmatic nucleus.
J Neurosci. 2008 May 21;28(21):5450-9. doi: 10.1523/JNEUROSCI.5750-07.2008.
6
Constitutively active TRPC3 channels regulate basal ganglia output neurons.
J Neurosci. 2008 Jan 9;28(2):473-82. doi: 10.1523/JNEUROSCI.3978-07.2008.
7
The sodium "leak" has finally been plugged.
Neuron. 2007 May 24;54(4):505-7. doi: 10.1016/j.neuron.2007.05.005.
8
The cellular, molecular and ionic basis of GABA(A) receptor signalling.
Prog Brain Res. 2007;160:59-87. doi: 10.1016/S0079-6123(06)60005-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验