Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.
LabEx "Ion Channel Science and Therapeutics", Montpellier, France.
J Physiol. 2021 Mar;599(6):1855-1883. doi: 10.1113/JP281044. Epub 2021 Jan 29.
Mouse chromaffin cells in acute adrenal slices exhibit two distinct spiking patterns, a repetitive mode and a bursting mode. A sodium background conductance operates at rest as demonstrated by the membrane hyperpolarization evoked by a low Na -containing extracellular saline. This sodium background current is insensitive to TTX, is not blocked by Cs ions and displays a linear I-V relationship at potentials close to chromaffin cell resting potential. Its properties are reminiscent of those of the sodium leak channel NALCN. In the adrenal gland, Nalcn mRNA is selectively expressed in chromaffin cells. The study fosters our understanding of how the spiking pattern of chromaffin cells is regulated and adds a sodium background conductance to the list of players involved in the stimulus-secretion coupling of the adrenomedullary tissue.
Chromaffin cells (CCs) are the master neuroendocrine units for the secretory function of the adrenal medulla and a finely-tuned regulation of their electrical activity is required for appropriate catecholamine secretion in response to the organismal demand. Here, we aim at deciphering how the spiking pattern of mouse CCs is regulated by the ion conductances operating near the resting membrane potential (RMP). At RMP, mouse CCs display a composite firing pattern, alternating between active periods composed of action potentials spiking with a regular or a bursting mode, and silent periods. RMP is sensitive to changes in extracellular sodium concentration, and a low Na -containing saline hyperpolarizes the membrane, regardless of the discharge pattern. This RMP drive reflects the contribution of a depolarizing conductance, which is (i) not blocked by tetrodotoxin or caesium, (ii) displays a linear I-V relationship between -110 and -40 mV, and (iii) is carried by cations with a conductance sequence g > g > g . These biophysical attributes, together with the expression of the sodium-leak channel Nalcn transcript in CCs, state credible the contribution of NALCN. This inaugural report opens new research routes in the field of CC stimulus-secretion coupling, and extends the inventory of tissues in which NALCN is expressed to neuroendocrine glands.
急性肾上腺切片中的小鼠嗜铬细胞表现出两种不同的放电模式,即重复模式和爆发模式。钠背景电导在静息时起作用,这可以通过低钠含量细胞外盐引起的膜超极化来证明。这种钠背景电流对 TTX 不敏感,不能被 Cs 离子阻断,并且在接近嗜铬细胞静息电位的电位下表现出线性 I-V 关系。其特性类似于钠泄漏通道 NALCN。在肾上腺中,NALCN mRNA 选择性地在嗜铬细胞中表达。这项研究增进了我们对嗜铬细胞放电模式如何受到调节的理解,并在涉及肾上腺髓质组织刺激-分泌偶联的参与者列表中添加了钠背景电导。
嗜铬细胞(CCs)是肾上腺髓质分泌功能的主要神经内分泌单位,为了适当分泌儿茶酚胺以响应机体需求,需要精细调节其电活动。在这里,我们旨在破译离子电导如何调节近静息膜电位(RMP)的小鼠 CCs 放电模式。在 RMP 时,小鼠 CCs 表现出混合放电模式,交替出现由动作电位以规则或爆发模式爆发组成的活动期和无活动期。RMP 对外界钠离子浓度的变化敏感,低钠含量的盐会使膜超极化,而与放电模式无关。这种 RMP 驱动反映了去极化电导的贡献,该电导(i)不能被河豚毒素或铯阻断,(ii)在 -110 至 -40 mV 之间表现出线性 I-V 关系,(iii)由阳离子携带,具有电导序列 g > g > g 。这些生理特性,加上 CCs 中钠泄漏通道 Nalcn 转录本的表达,有力地证明了 NALCN 的贡献。本报告首次揭示了 CC 刺激-分泌偶联领域的新研究途径,并将 NALCN 表达的组织范围扩展到神经内分泌腺。