Department of Chemistry, University of California, Berkeley, California 94720, USA; email:
Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.
Annu Rev Biophys. 2021 May 6;50:447-468. doi: 10.1146/annurev-biophys-062920-063555. Epub 2021 Mar 2.
Membrane potential (V) is a fundamental biophysical signal present in all cells. V signals range in time from milliseconds to days, and they span lengths from microns to centimeters. V affects many cellular processes, ranging from neurotransmitter release to cell cycle control to tissue patterning. However, existing tools are not suitable for V quantification in many of these areas. In this review, we outline the diverse biology of V, drafting a wish list of features for a V sensing platform. We then use these guidelines to discuss electrode-based and optical platforms for interrogating V. On the one hand, electrode-based strategies exhibit excellent quantification but are most effective in short-term, cellular recordings. On the other hand, optical strategies provide easier access to diverse samples but generally only detect relative changes in V. By combining the respective strengths of these technologies, recent advances in optical quantification of absolute V enable new inquiries into V biology.
膜电位 (V) 是所有细胞中存在的基本生物物理信号。V 信号的时间范围从毫秒到几天不等,长度从微米到厘米不等。V 影响许多细胞过程,从神经递质释放到细胞周期控制再到组织模式形成。然而,现有的工具并不适合在许多这些领域对 V 进行定量。在这篇综述中,我们概述了 V 的多样化生物学,为 V 传感平台拟定了一个功能愿望清单。然后,我们使用这些准则来讨论用于检测 V 的基于电极和光学的平台。一方面,基于电极的策略表现出出色的定量效果,但在短期、细胞记录方面效果最佳。另一方面,光学策略更容易访问各种样本,但通常只能检测 V 的相对变化。通过结合这些技术各自的优势,最近在绝对 V 的光学定量方面的进展使人们能够对 V 生物学进行新的研究。
Annu Rev Biophys. 2021-5-6
Front Bioeng Biotechnol. 2020-7-2
Proc Natl Acad Sci U S A. 2025-5-27
Biophys Rep (N Y). 2025-3-12
Nat Phys. 2020-3
Nat Nanotechnol. 2021-1
Nat Methods. 2019-7-29