Suppr超能文献

瘦鼠和肥胖鼠的饮食组成和体重变化对肠道菌群的影响。

Responses of gut microbiota to diet composition and weight loss in lean and obese mice.

机构信息

Division of Molecular Genetics and Naomi Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, New York, USA.

出版信息

Obesity (Silver Spring). 2012 Apr;20(4):738-47. doi: 10.1038/oby.2011.111. Epub 2011 May 19.

Abstract

Maintenance of a reduced body weight is accompanied by a decrease in energy expenditure beyond that accounted for by reduced body mass and composition, as well as by an increased drive to eat. These effects appear to be due--in part--to reductions in circulating leptin concentrations due to loss of body fat. Gut microbiota have been implicated in the regulation of body weight. The effects of weight loss on qualitative aspects of gut microbiota have been studied in humans and mice, but these studies have been confounded by concurrent changes in diet composition, which influence microbial community composition. We studied the impact of 20% weight loss on the microbiota of diet-induced obese (DIO: 60% calories fat) mice on a high-fat diet (HFD). Weight-reduced DIO (DIO-WR) mice had the same body weight and composition as control (CON) ad-libitum (AL) fed mice being fed a control diet (10% calories fat), allowing a direct comparison of diet and weight-perturbation effects. Microbial community composition was assessed by pyrosequencing 16S rRNA genes derived from the ceca of sacrificed animals. There was a strong effect of diet composition on the diversity and composition of the microbiota. The relative abundance of specific members of the microbiota was correlated with circulating leptin concentrations and gene expression levels of inflammation markers in subcutaneous white adipose tissue in all mice. Together, these results suggest that both host adiposity and diet composition impact microbiota composition, possibly through leptin-mediated regulation of mucus production and/or inflammatory processes that alter the gut habitat.

摘要

体重减轻伴随着能量消耗的增加,超出了身体质量和组成的减少,以及进食的增加。这些影响似乎部分归因于由于体脂减少导致循环瘦素浓度降低。肠道微生物群已被牵连到体重调节中。人类和小鼠的研究已经研究了减肥对肠道微生物群定性方面的影响,但这些研究受到同时改变饮食成分的影响,饮食成分影响微生物群落组成。我们研究了 20%体重减轻对高脂肪饮食(HFD)诱导肥胖(DIO:60%卡路里脂肪)小鼠肠道微生物群的影响。减轻体重的 DIO(DIO-WR)小鼠与对照组(CON)自由进食(AL)的小鼠体重和组成相同,喂食对照饮食(10%卡路里脂肪),从而可以直接比较饮食和体重干扰的影响。通过从牺牲动物的盲肠中提取的 16S rRNA 基因进行焦磷酸测序评估微生物群落组成。饮食组成对微生物群的多样性和组成有强烈影响。微生物群的特定成员的相对丰度与所有小鼠的循环瘦素浓度和皮下白色脂肪组织中炎症标志物的基因表达水平相关。这些结果表明,宿主肥胖和饮食组成都可能通过瘦素介导的粘液产生调节和/或改变肠道栖息地的炎症过程来影响微生物群组成。

相似文献

1
Responses of gut microbiota to diet composition and weight loss in lean and obese mice.
Obesity (Silver Spring). 2012 Apr;20(4):738-47. doi: 10.1038/oby.2011.111. Epub 2011 May 19.
3
Diet-induced obese mice are leptin insufficient after weight reduction.
Obesity (Silver Spring). 2009 Sep;17(9):1702-9. doi: 10.1038/oby.2009.106. Epub 2009 Apr 16.
9
Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation.
Am J Physiol Gastrointest Liver Physiol. 2010 Aug;299(2):G440-8. doi: 10.1152/ajpgi.00098.2010. Epub 2010 May 27.

引用本文的文献

2
Microbiome and cardiovascular health unexplored frontiers in precision cardiology: a narrative review.
Ann Med Surg (Lond). 2025 May 26;87(7):4255-4261. doi: 10.1097/MS9.0000000000003430. eCollection 2025 Jul.
4
Changes in energy homeostasis, gut peptides, and gut microbiota in Emiratis with obesity after bariatric surgery.
PLoS One. 2025 Feb 24;20(2):e0318699. doi: 10.1371/journal.pone.0318699. eCollection 2025.
7
Chronic binge drinking-induced susceptibility to colonic inflammation is microbiome-dependent.
Gut Microbes. 2024 Jan-Dec;16(1):2392874. doi: 10.1080/19490976.2024.2392874. Epub 2024 Aug 20.
8
Integrated analysis of gut microbiome and its metabolites in ACE2-knockout and ACE2-overexpressed mice.
Front Cell Infect Microbiol. 2024 Jul 17;14:1404678. doi: 10.3389/fcimb.2024.1404678. eCollection 2024.

本文引用的文献

1
Effects of chronic weight perturbation on energy homeostasis and brain structure in mice.
Am J Physiol Regul Integr Comp Physiol. 2011 Jun;300(6):R1352-62. doi: 10.1152/ajpregu.00429.2010. Epub 2011 Mar 16.
3
Human oral, gut, and plaque microbiota in patients with atherosclerosis.
Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1(Suppl 1):4592-8. doi: 10.1073/pnas.1011383107. Epub 2010 Oct 11.
4
Supervised classification of microbiota mitigates mislabeling errors.
ISME J. 2011 Apr;5(4):570-3. doi: 10.1038/ismej.2010.148. Epub 2010 Oct 7.
6
Rapidly denoising pyrosequencing amplicon reads by exploiting rank-abundance distributions.
Nat Methods. 2010 Sep;7(9):668-9. doi: 10.1038/nmeth0910-668b.
8
Absence of intestinal microbiota does not protect mice from diet-induced obesity.
Br J Nutr. 2010 Sep;104(6):919-29. doi: 10.1017/S0007114510001303. Epub 2010 May 5.
9
QIIME allows analysis of high-throughput community sequencing data.
Nat Methods. 2010 May;7(5):335-6. doi: 10.1038/nmeth.f.303. Epub 2010 Apr 11.
10
The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice.
Sci Transl Med. 2009 Nov 11;1(6):6ra14. doi: 10.1126/scitranslmed.3000322.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验